

### ePIC – Far Backward Overview

#### Krzyzstof Piotrzkowski, Nick Zachariou, Jaroslav Adam, Igor Korover

10<sup>th</sup> January 2023

ePIC Collaboration Meeting

### Far Backward WG:

Instrumentation along the outgoing electrons

Regular meetings\* are on Thursday 10 am ET

Our mailing list: https://lists.bnl.gov/mailman/listinfo/eic-projdet-farback-l



### Far Backward instrumentation

- Luminosity monitors
- Low Q<sup>2</sup> tagger



# Luminosity Monitors

The luminosity measurement provides the required normalization for all physics studies.

- Absolute cross sections.
- Combine different running periods.
- Relative luminosity of the different bunch crossings.

Accuracy of the order of 1% is required (or relative luminosity exceeding 10<sup>-4</sup> precision)



### Luminosity Monitors

Bremsstrahlung:

 $ep \rightarrow e \gamma p$  $eAu \rightarrow e \gamma Au$ 

- The cross section is precisely known from QED
- Large cross section peaked for photons at small angles





# Luminosity monitors

Multiple subsystems:

Luminosity Direct Photon Detector

HERA II <u>arXiv:1306.1391</u>



Luminosity Pair Spectrometer

HERA II reached about <u>1.7%</u> in systematic uncertainty

# Luminosity monitors

EIC expected luminosity of 10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>

Higher event rate and higher synchrotron radiation.

Proton polarization  $\sigma_{brem} = \sigma_o(1 + aP_eP_p)$ 

(limited by the precision of the polarization measurement)

- High energy resolution.
- Segmentation of calorimeters.
- Adding tracking layers for pair spectrometer.
- Cross calibration with Low Q<sup>2</sup> taggers. (Tagging bremsstrahlung electrons and counting corresponding photons in the photon detectors.)

See talks by: Jae Nam for Direct photon detector. Dhevan Gangadharan for pair spectrometers



# Low Q<sup>2</sup> taggers

Two stations: Tagger 1 and 2 are placed along the outgoing electron beam

• Important for quasi real photoproduction.





Clean photoproduction signal can be taken over a limited region of  $10^{-3} \leq Q^2 \leq 10^{-1}$  (GeV/c)<sup>2</sup>

#### Dilepton production



- Far-backward taggers detect scattered electrons,  $\pi \theta_e < 10$  mrad
- Scattered proton is detected in far-forward,  $\theta_p < 6 \text{ mrad}$
- All lepton pairs, e<sup>±</sup>, μ<sup>±</sup> and τ<sup>±</sup> can reach central detector.

Can be a background for  $J/\psi$  or  $\Upsilon$  production.

Measurement with  $\mu^{\pm}$  pairs is sensitive to proton charge radius.

Opportunity for data-driven calibrations with two-photon exclusive process.

Process is implemented in GRAPE generator (arXiv:hep-ph/0012029)

### Meson spectroscopy



- Final states of  $J/\psi + \pi^+\pi^- + \text{scattered } e$  and nucleons, events both at low  $Q^2$  and low t.
- The integrated luminosities expected for the EIC, provide the opportunity to study rare exclusive processes not accessible at HERA.

# Low Q<sup>2</sup> tagger – detector concept

- Each tagger will consist from tracking layers.
- Calorimeter under consideration.
- Ideally detector will be in primary vacuum.
- Reference design based on tracker outside vacuum.
- Different configurations/combinations considered.



Detailed studies presented by: Simon Gardner

### **Technologies for Far Backward detectors**

- Good timing and short integration time is needed to identify each bunch crossing.
- Large data rates and volumes in DAQ, also should provide online machine performance.

#### <u>Trackers</u>

- Multiple particles from the same bunch crossing.
- Small pixel pitch for track separation MAPS or AC-LGAD for sensors.
- Suitable ASIC for timing capability (Timepix4).

#### **Calorimeters**

- Performance stability over the run
- Homogeneous bars of PbWO<sub>4</sub> Sampling
  W/ScFi, quartz fibers or W-Si.
- Readout by fast PMTs or SiPM.

# Contribution from out of project funding

Luminosity Monitors ~ 1M\$ Low Q2 taggers ~ 1 M\$



Poland: MEiN (Ministry of Education and Science)

Czech Republic: GACR (The Czech Science Foundation).



GRANTOVÁ AGENTURA ČESKÉ REPUBLIKY



### Science and Technology Facilities Council

Ministerstwo

Edukacji i Nauki

# Thank you