

LOW Q² TAGGING AT EPIC

EPIC Collaboration Meeting

Simon Gardner^{*1} Derek Glazier¹ Ken Livingston¹ Jaroslav Adam² Miroslav Myska²

¹University of Glasgow

²Czech Technical University in Prague

*Simon.Gardner@Glasgow.ac.uk

OVERVIEW

Quasi-real tagging (low Q²) (θ_e <10 mrad)

Status

Geometry integrated into EPIC simulation Clustering, tracking and particle reconstruction Early stages of integrating into ElCrecon with ACTS

Detector Goals

Large acceptance (>10%) Good energy resolution $\lesssim\!1\%$ Reconstruction of scattering plane (polarization)

Optimum solution

Two in-vacuum tagger modules 3 or 4 layers of pixel detectors Calorimeter not required (cf. current design)

Best technology

ACCEPTANCE, EFFICIENCY & RESOLUTION

Detector acceptance

In vacuum tracker and reconstruction technique provides better energy resolution than baseline calorimeter with improved θ and ϕ .

2

TRACKING & RATES

Typical bunch crossing (18x275 maximum luminosity)

Contains ~12 electrons ~7 are accepted by Tagger 2 Clustering and tracking: 95% reconstruction efficiency

e⁻ from Quasi-Real scattering event among e⁻ from Bremsstrahlung

Rates

Maximum rate per $55\mu m$ pixel: 20 kHz Maximum pixel rate per layer from MIPs: 2.5 GHz At 64 bits per pixel = 320Gb/s. (Big but Timepix4 + SPIDR4 can do this)

Tagger 2 QR Hit Distribution [Hz/ 55µm pixel]

TIMEPIX4 + SPIDR4

Hybrid pixel detector: Timepix ASIC + Sensor (Si) 55 μ m pixel pitch

<1 ns timing resolution (Si limit)

			Timepix3 (2013)	Timepix4 (2019)			
Tec	hnology		130nm – 8 metal	65nm - 10 metal			
Pix	el Size		55 x 55 µm	55 x 55 μm			
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448 3.5x			
Sensitive area			1.98 cm ²	6.94 cm ²			
Readout Modes	Data driven (Tracking)	Mode	TOT and TOA				
		Event Packet	48-bit	64-bit 33%			
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s			
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel 8x			
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-b			
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel a			
		Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10º hits/mm²/s <mark>8x</mark>			
TO	T energy reso	olution	< 2KeV	< 1Kev			
Tim	ne resolution		1.56ns	~200ps			
Por	dout bandwi	idth	≤5.12Gb (8x SLVS@640	≤163.84 Gbps (16x			
Readout bandwidth			Mbps)	@10.24 Gbps)			

Store only MIPS clusters (x,y,time,energy,width) = 80 bits

2 tagger modules, 4 layers

 ${\sim}200~\text{Gb/s}$ to DAQ

 ${\sim}1.5~{\rm Gb/s}$ to disk, DAQ trigger rate 500kHz

Timepix4 + SPIDR4 an off-the-shelf solution

Next-gen sensors improve on Si timing limit: i-LGAD (link)

SPIDR4: http://www.nikhef.nl/ s01/SPIDR4-MF-GP-apr2020.pdf SPIDR4 DAQ: https://indico.cern.ch/event/1215762/contributions/5137274/ Timepix4: X. Llopart et al 2022 JINST 17 C01044

Software

Working clustering, tracking and ML particle reconstruction as a standalone project

- · Integrate ACTS into workflow
- · Reconstruct particles using EICrecon
- $\cdot\,$ Include in next physics campaign

Simulation Studies

· ...

- $\cdot\,$ Position and size optimisation
- · Synchroton backgrounds
- · Physics reconstruction tests

Hardware & Integration

- Review design with vacuum and beamline experts
- · Perform cooling calculations

SUMMARY

Status

Geometry integrated into EPIC simulation Early stages of adding to EICrecon with ACTS

Optimum solution

Two in-vacuum tagger modules 3 or 4 layers of pixel detectors

Best technology

Timepix4 + SPIDR4

Cost Estimate (Timepix4)

Layer (12xTimepix4) \$110k (Electronics)

UK contribution to EIC (inc. MAPS, Tagger, ...)

Proposal submission 10th February Funding \$40M over 5-7 years

ΒΑСКUP

Quasi-real photoproduction

$$\frac{d^2\sigma}{dydx} = \frac{\alpha}{2\pi} \cdot \frac{(1-x)}{x} \cdot \frac{(1+(1-y))^2}{y} \cdot \sigma_{\gamma p}(W)$$

e x p: 18x275 GeV

 \sim 0.00025 / bunch crossing Rate \sim 0.25 MHz on tagger (half of 500 kHz) Can have coincidence with central detectors. \sim 0.5 e^- per coincidence

Generator publication and code by Jaroslav Adam: https://doi.org/10.1016/j.cpc.2021.108251 https://github.com/adamjaro/GETaLM

Bremsstrahlung - Bethe-Heitler

$$d\sigma = 8Z^{2}\alpha r_{e}^{2}\frac{\omega}{\omega} \cdot \frac{\varepsilon'}{\varepsilon} \cdot \frac{\delta d\delta}{(1+\delta^{2})^{2}} \cdot \left(\left[\frac{\varepsilon}{\varepsilon'} + \frac{\varepsilon'}{\varepsilon} - \frac{4\delta^{2}}{(1+\delta^{2})^{2}} \right] \log \frac{2\varepsilon\varepsilon'}{m\omega} - \frac{1}{2} \left[\frac{\varepsilon}{\varepsilon'} + \frac{\varepsilon'}{\varepsilon} + 2 - \frac{16\delta^{2}}{(1+\delta^{2})^{2}} \right] \right)$$

e x p: 18x275 GeV

 \sim 10 / bunch crossing Rate \sim 1000 MHz on tagger No coincidence with central detectors \sim 10 e^- per coincidence Machine learning used to reconstruct initial electron vector from track due to complexity of magnetic field. 2 Independent, successful approaches.

ROOT TMVA - DNN Input = 4 Track variables Hidden layout = TANH|200,TANH|200,TANH|100,TANH|50,LINEAR Output = E, θ , cos ϕ , sin ϕ Optimisation and reduction of hidden layers needs to be performed

Additional scope to perform classification for background removal/weighting.

Acceptance for each tagger station and region of double counting.

Key Quasi-Real Event Cuts

Cut	Total Efficiency	Forward (%) (θ <10.5 mrad) Efficiency (%)
Forward (θ <10.5 mrad)	66.5	100
Accepted	19.4	29
Resolvable ϕ ($ heta$ >1mrad)	8.1	12.2

RESOLUTION BACKUP DD4HEP

Energy Resolutions [%] Theta Resolutions [mrad] Phi Resolutions [rad] 9 [mrad] θ [mrad] 10 12 14 16 18 10 12 14 16 18 10 12 14 16 18 8 8 8 Electron energy [GeV] Electron energy [GeV] Electron energy [GeV] Electron energy [GeV] ectron energy [GeV] Electron energy [GeV] 102 10^{2} 6-5 -4 -3 -2 -1 -2 -1.5 -1 -0.5 0 0.5 1 1.5 -15 -0.5 0 0.5 0 -1 1 1.5 Energy (gen-recon)/gen [%] θ gen-recon [mrad] ø gen-recon [rad]

Resolutions of a perfect detector as a function of theta and energy, from epic DD4hep simulation.

Resolutions of a 55 um pitch detector, from epic DD4hep simulation.

Kinematic reconstruction (using neural network)

Reconstructed resolutions of a 55 um pitch detector as a function of theta and energy, from epic DD4hep simulation.

Fully reconstructed (clustering, tracking..) resolutions of a 100 um pitch detector, stand alone Geant4 simulation. (Tagger1)

Kinematic reconstruction (using neural network)

Fully reconstructed (clustering, tracking..) resolutions of a 100 um pitch detector as a function of theta and energy, stand alone Geant4 simulation. (Tagger1)

Fully reconstructed (clustering, tracking..) resolutions of a 100 um pitch detector, stand alone Geant4 simulation. (Tagger2)

Kinematic reconstruction (using neural network)

Fully reconstructed (clustering, tracking..) resolutions of a 100 um pitch detector as a function of theta and energy, stand alone Geant4 simulation. (Tagger2)

Hit rates per pixel assuming 55um pitch (Larger/smaller pixel rates scale with area) Ideal detector as close as rates allow Will need to be movable Timepix4 allows pixel masking if an area has too high flux.

10-

10.4

107

104

103

103

10

x [mm]

100 x [mm] (Right) Schematic showing the parameters used to construct the tagger geometry as currently default in EPIC simulation. (Beam spot at quadrupole - $10\sigma_x \sim 3.2$ cm) (Below) Estimate of layer material budget.

Tracking

Layer	Component	Material	X0(g/cm2)	Density(g/cm3)	X0(cm)	Depth(cm)	Depth(%X0)
	Sensor ASIC	Silicon Silicon	21.82 21.82	2.33 2.33	9.37 9.37	0.006	0.06 0.11
	PCB	FR4	31.85	2.00	15.93	0.020	0.13
	Heat transfer	Copper	12.86	8.96	1.44	0.010	0.70
Total			16.80	3.63	4.63	0.046	0.99

A (6900) сē cēqā ccas ccāā ccccc ccqqq . . 4750 $\chi_{c0}(4700)$ ψ(4660) $\chi_{c0}(4500)$ $Z_{c}(4430)$ P_c(4457) 4500 $\Sigma_c D^*$ w(4415) P-(4440) Y(4390) - Pc(4380) w(4360) $\chi_{c1}(4274)$ P.(4312) -Rco(4240) $\Sigma_c D$ 4250 Y(4230) Z_{cs}(4220) X(4140) Z(4250) $\psi(4160)$ $Z_{c}(4200)$ Z(4050) $Z_c(4020)$ J/ψp D^*D^* 4000 $X(3915\psi(4040))$ $Z_{cs}(4000)$ $\chi_{c2}(3930)$ Z_{cs}(3985) Z_(3900) DD * T_{cc} X(3872) -ψ₂(3823) $\chi_{c0}(3860) \psi(3770)$ DD 3750 w(25) $n_c(2S)$ χ_{c2} h_c χ_{c1} 3500 χ_{c0} XYZ 3250 J/ψ p,A е n, 3000 Z_{cs} P_c 277 0-+ 0 + +2---2++ 2? 0-- 1+l = 1l = 1/2I = 0

e.g. Exotic Meson Workshop: https://indico.bnl.gov/event/14792/ MeV

Ratio of expected Bremsstrahlung to Quasi-Real events as a function of Q^2 .

Further improvements through reaction exclusivity variables (and timing)

Timeline for proposed Timepix5 aligns with EIC/EPIC More risk but highly experienced collaboration Early stages so could influence desired features

Proposed Timepix5 features

- \cdot < 30 ps ASIC resolution Bremsstrahlung background rejection by t_0 separation.
- · On chip 3x3 clustering Readout data reduction.
- $\cdot\,$ On chip PID Background rejection and data reduction.

i-LGAD sensor demonstrated to exceed ASIC time resolution digitization. Presentation and Document: https:indico.cern.ch/event/829863/contributions/5061075/ https://arxiv.org/abs/2202.01552