

EPIC SIDIS Physics working group

ePIC Collaboration meeting January 11, 2023

Marco Radici (Pavia) Ralf Seidl (RIKEN) Charlotte van Hulse (UAH) Anselm Vossen (Duke)

Organizational

- Meetings: roughly bi-weekly Tuesdays 8:30 ET (14:30 CET/22:30 JST)
- Indico agenda: <u>https://indico.bnl.gov/category/</u> <u>418/</u> (subscribe to either this or general project-detector indico calendar to automatically see in your calendar)
- Mailing list: please subscribe to eic-projdet-semiincll@lists.bnl.gov
- Mattermost <u>https://eic.cloud.mattermost.co</u> <u>m/main/channels/semi-inclusive</u>
- Analysis framework: <u>https://github.com/eic/epic-</u> <u>analysis</u> + some standalone code

Main activities

- Main strategy toward CD2/3a:
 - Revisit existing SIDIS studies on (SI)DIS kinematic variable resolutions, track changes with Detector configuration changes, try to optimize kinematic reconstruction even within a method (such as using either tracking or EMCal information for scattered lepton based method, etc)
 - Single hadron A_{LL} and Sivers/Collins/unpol TMD studies using reweighting based on parameterizations from global fits. Keep demonstrating feasibility of main physics goals.
 - Similar studies on di-hadrons for DiFFs, Gluon Sivers, di-hadrons for saturation
- Longer term strategy:
 - Proper treatment of radiative effects and its impact on physics results
 - Study the variation of physics impact using different generators and different PDF/FF (both polarized and unpolarized) parameterizations
 - Preparation of realistic unfolding for kinematic smearing and PID misidentification
 - Gain understanding of dominant sources of systematic uncertainties to concentrate on reducing those

1/11/2023

Existing simulations:

- Pythia6 (using pythiaeRHIC), without radiative corrections, in HepMC3 format, including crossing angle, 4 Q² bins: 1-10-100-100-10000, (18x275,10x100,5x100,5x41), on rcf: /gpfs02/eic/DATA/YR_SIDIS/ep_AAxBBB/hepmc ip6/noradcor/ in part on S3, including detector Simulations at:
- S3/eictest/EPIC/RECO/22.11.3/[epic_arches ,epic_brycecanyon]/SIDIS/pythia6/ep_[18x2 75,5x41]/
- Pythia6 (using pythiaeRHIC), with radiative corrections (radgen), in HepMC3 format, including crossing angle, 4 Q² bins: 1-10-100-100-10000, (18x275,10x100,5x100,5x41), on rcf:

/gpfs02/eic/DATA/YR SIDIS/ep AAxBBB/hepmc ip6/radcor/ in part on S3, including detector Simulations at:

Dedicated Λ simulations (2M), Pythia8: on S3/eictest/ATHENA/EVGEN/SIDIS/Lambda and S3/eictest/EPIC/RECO/22.11.3/[epic arches ,epic brycecanyon]/SIDIS/Lambda ABCONV/

	Energy	Q2min	Q2max	Xsec[pb]	#gen files	#events	Lumi [pb-1]
	noradcor.18x275	1	10	8.09E+05	20	40 M	4.95E+01
	noradcor.18x275	10	100	7.09E+04	20	20M	2.82E+02
	noradcor.18x275	100	1000	3.03E+03	40	4M	1.32E+03
	noradcor.18x275	1000	100000	5.70E+01	20	1M	1.76E+04
	noradcor.10x100	1	10	5.39E+05	20	40 M	7.42E+01
	noradcor.10x100	10	100	3.96E+04	20	20M	5.05E+02
	noradcor.10x100	100	1000	1.20E+03	20	2M	1.67E+03
	noradcor.10x100	1000	100000	4.29E+00	20	1M	2.33E+05
	noradcor.5x100	1	10	4.46E+05	20	40 M	8.96E+01
	noradcor.5x100	10	100	2.90E+04	20	20M	6.89E+02
	noradcor.5x100	100	1000	6.47E+02	20	2M	3.09E+03
	noradcor.5x100	1000	100000	2.09E-01	20	0.2M	9.56E+05
	noradcor.5x41	1	10	3.43E+05	20	40 M	1.17E+02
	noradcor.5x41	10	100	1.94E+04	20	20M	1.03E+03
	noradcor.5x41	100	1000	2.22E+02	20	2M	9.01E+03
	radcor.18x275	1	10	8.54E+05	20	40 M	4.68E+01
	radcor.18x275	10	100	1.46E+05	20	20M	1.37E+02
	radcor.18x275	100	1000	6.92E+03	40	4M	5.78E+02
	radcor.18x275	1000	100000	1.21E+02	20	1M	8.25E+03
	radcor.5x41	1	10	3.73E+05	200	20M	5.36E+01
	radcor.5x41	10	100	2.29E+04	1000	10M	4.37E+02
	radcor.5x41	100	1000	2.58E+02	20	2M	7.76E+03

٠

RIKEN

All y resolution widths and means

SIKEN

DIS kinematic reconstruction examples

- Full Pythia6+GEANT simulations of the ECCE detector used for various (SI)DIS kinematic resolutions and for various reconstruction methods (lepton, Jaquet-Blondel, Double Angle, etc)
- x and y resolutions suffer from lepton method at lower y, partially recoverable in double angle method(hybrid of scattered lepton + hadronic final state)

RIKEN

Example of SIDIS resolutions studies

- Full Pythia6+GEANT simulations of the ECCE detector for various (SI)DIS kinematic resolution and reconstruction methods:
 - z resolution suffers in lepton method at lower y, partially recoverable in double angle method
 - p_T and azimuthal angles ϕ_h , ϕ_s very robust

Similar studies by Matthew McEneaney (Duke), not shown

Azimuthal angles

RIKEN

8

ML optimization studies

Analysis of longitudinal double-spin asymmetry

- SIDIS data generated with PYTHIA-6 : $5x41 \text{ GeV}^2$ and $18x275 \text{ GeV}^2$
- Full reconstruction through GEANT simulation (ECCE July concept)
- DIS cuts: $Q^2>1$ GeV²; 0.01<y<0.95 and W²>10 GeV²
- Based on reconstructed scattered electron
- Weighting of events at parton level at NLO:

$$1 + \Lambda D(y) \frac{\Delta \otimes D^{q,g \to h}}{F_{UU}^h}$$

- $\Lambda = \pm 1$: relative beam helicity orientation
- Δ: DSSV14 helicity distributions
- $D^{q,g \rightarrow h}$ DSS14 pion and kaon fragmentation function
- Unpolarised F_{UU}^{h} : NNPDF30_nlo_as_0118 and DSS14 FFs
- Weighting only for pythia processes: 99, 131-136
- For ratio of longitudinal and transverse γ^* cross section in D(y): Phys. Lett. B, 452:194–200, 1999
- D(y) set to 1 for evaluation of systematics

Charlotte van Hulse

Sea quark helicities

Re-weighted asymmetries

Projected uncertainties

Duane Byer (Duke)

Ralf Seidl: SIDIS WG

1/11/2023

z-dependence of multiplicities and widths

- Top: Explicit z dependence of select pion multiplicities in 3 x-Q² bins, including the double-Gaussian fits
- Bottom: behavior of the narrow Gaussian widths vs z for pions, kaons and protons
- Small z discrepancies likely due to target fragmentation

Impact for unpolarized TMD functions

- Similar to YR impact studies following the latest SV global fit (<u>https://arxiv.org/abs/1912.065</u>:
 2) for the unpolarized TMDs based on the existing SIDIS +DY data
- Impact figure still that from YR, needs to be replaced (but little differences expected)

Sensitivies on unpol TMDs from Pavia

grey blobs = uncertainties from PV17

colored blobs = projected uncertainties at various **ATHENA** configurations (including 3% systematic error)

at each (Q^2, x) bin, configuration with largest impact is shown

Sivers/Collins measurements in SIDIS

- Reweight events according to true parton flavor q, hadron h, x, z, Q², P_{hT}, azimuthal angles and random spin orientiation
- $ep^{\uparrow} \rightarrow e'hX$
- A_{UT} asymmetries (Unpolarized lepton beam, Transversely polarized target)
- Different azimuthal modulations related to Sivers effect (sin(φ-φ_s)) and Collins effect (sin(φ+φ_s))
- Fit simultaneously in the reconstructed events and calculate asymmetries

 Input structure functions (polarized and unpolarized) from Torino global fits (arXiv:0812.4366, arXiv:0805.2677) as in <u>https://github.com/prokudin/tmdparametrizations/</u>

Asymmetries and Projections

Systematic uncertainties estimated from differences between true and reconstructed asymmetries \rightarrow they are likely largely overestimated since most of the kinematic smearing would be unfolded, but give a sense of where uncertainties still might be larger due to that unfolding

Impact for Sivers functions

- Similar to YR impact studies following the latest BPV global fit (arXiv:2103.03270) for the Sivers function based on the existing SIDIS +DY data
- Uncertainties are shown for current level of knowledge on up/down Sivers functions at various x vs kt and expected impact from ECCE

Tensor charge impact

- Similar to <u>Gamberg et al</u> <u>Phys.Lett.B 816 (2021) 136255</u>
 (for YR) use fitting code from latest global fit Cammarota et al arXiv:2002.08384 to extract
 impact on Transversity, Collins functions and tensor charges
- Together with projected JLAB12 data precision to compare with Lattice results (and check for possible discrepancies)

18

Gluon saturation studies (back-to-back dihadrons)

- Potential to probe gluon saturation with high-pT gluon dijets/dihadrons
- Away side suppression from e+p to e+A

J_{eAu} vs x_g, 18x110

EIC dijet cuts from: Phys. Rev. D 101, 072003 (2020), Page, Chu, Aschenauer

Fast simulation, scaled to 10 fb⁻¹

- Red ATHENA projected dihadron uncertainties on model from Phys.Rev.D. 89, 074037
- Blue JeAu using NPDF for Au and p, dihadron uncertainties
- Black dijet uncertainties, no model calculation

1/11/2023

Connor Pecar (Duke)

Lambda studies

Lambda Reconstruction

Enea Prifti (UIC)

20

1/11/2023

Summary

- Continuing the studies performed by ECCE and ATHENA on
 - (SI)DIS resolutions
 - A_{LL} measurements
 - Unpolarized TMDs
 - Sivers/Collins and DiFF asymmetries
 - Back-to-back di-hadron asymmetries
 - Lambdas
- Moved from Fun4All framework to epic-analysis

