epic-analysis Common Analysis Framework for (SI)DIS and More

Christopher Dilks

ePIC Collaboration Meeting

January 2023

Research supported by the

Outline

epic-analysis

- Support ePIC, ECCE, ATHENA, Delphes
- Data retrieval automation
- Kinematics Reconstruction
- Q² weighting

Continuous Integration

- As a "slow" benchmark
- Comparisons

Ongoing Plans

GitHub Repository

https://github.com/eic/epic-analysis

E eic / epic-analysis				
<> Code	⊙ Issues 16 🖁 Pull requests 7	Discussions 🕑 Actions 🖽 Projects 🗿 🖽 Wiki 🛈	Security 🗠 Insigl	
	ဖု main 🚽 ဖု 20 branches 🕟 8 tag	Go to file Add file	✓ Code →	
	c-dilks ci: use relative resolution rath	er than absolute resolution (#230) 🛛 🗸 d24193c last week	• • • 565 commits	
	.github/workflows	ci: compare Arches and BryceCanyon, with and without radiative co	last week	
	🖿 datagen	setup	last year	
	🛅 datarec	update comments to clarify HEPMC file paths	last month	
	🛅 deps	rename sidis-eic -> epic-analysis (#228)	2 weeks ago	
	doc	feat: update S3 endpoint (#221)	last month	

C. Dilks

Thanks to our Contributors

And many more for guidance and help!

History

Iargex-eic

- Original focus on low-y region, large x and low Q2
- Generalized to support SIDIS studies in ATHENA

sidis-eic

- Renamed for ePIC
- Migrated to the eic organization on GitHub

epic-analysis

• Interest from Jets, Heavy Flavor, and Inclusive working groups \rightarrow more general name

epic-analysis

Multidimensionally binned objects (Histograms, ...)

ePIC Detector Configurations

Arches SciGlass bEcal mRICH 2nd MPGD behind DIRC

C. Dilks

ePIC Detector Configurations

BryceCanyon Imaging bEcal pfRICH Calorimeter Insert

C. Dilks

s3tool

- Adapts to the varying file tree and naming conventions of past productions
- Downloads files from S3, or generates lists of URLs for streaming
- Organizes data by energy and Q2 bin
- Obtains cross section for Q2 weighting
- Generates "config files" for usage in epic-analysis

Supports ePIC, ATHENA, ECCE, and can run HEPMC files through Delphes

S3/eictest/EPIC/REC0/22.11.2/epic_arches/DIS/NC/ 10x100 - minQ2=10 - minQ2=100 - minQ2=1000 - 18x275 - minQ2=10 - minQ2=10 - minQ2=100 - minQ2=10 - minQ2=10

minQ2=10 minO2=100 S3/eictest/EPIC/REC0/22.11.3/epic_arches/SIDIS/ Lambda_ABCONV pythia6 ep_18x275 hepmc_ip6 radcor ep_5x41 hepmc_ip6 noradcor radcor

Ask us to support other productions, or open a PR

Ruby

C. Dilks

Kinematics Reconstruction Methods

Kinematics calculations performed in dedicated class(es)

- Used for both reconstructed and MC generated particles
- Inputs: beams, scattered electron, hadronic final state, and observed particles (single hadrons for SIDIS, jets, etc.)

Calculations

- Inclusive variables (x, Q2, W, y, ...)
 - <u>6 methods</u>: electron, J.B., double angle, mixed, sigma, eSigma
- SIDIS variables (p, p_T , z, ϕ_h , ...)
- Jet variables (z, p_T , j_{\perp} , ...)
- In general uses Lorentz invariant calculations; boost to specific frames when needed

Future Plan

 Cross check with upstream calculations from the reconstruction framework and/or upstream our methods

Kinematics Reconstruction with Machine Learning

- Reconstruction with pre-trained tensorflow model available (soon)
- Utilizing full hadronic final state and electron information with Particle Flow networks (<u>http://energyflow.network</u>, arXiv:1810.05165) to reconstruct virtual photon four momentum
 - Our application to ATHENA full simulation presented at DIS2022 (arXiv:2209.14489)
- Currently implemented with event-by-event predictions done in python script, bound using pybind11
- Current plan is to store trained model for each COM energy, specified simulation versions in epic-analysis repository
 - Requires tensorflow and energyflow python packages
 - Then callable with "ML" as reconstruction method in epic-analysis
- Validating results on current ePIC simulation, but release soon!

Slide from Connor Pecar

Q² Weighting

Data are produced in varying Q² ranges:

- 1 10 GeV²
- 10 100 GeV²
- 100 1000 GeV²
- 1000 GeV² and above

Use weights to combine them

- Uses Cross sections from Pythia and Number of Events analyzed
- Automated by epic-analysis
 - Maintain a table of cross sections for varying beam energies
- Allows for evaluation in a *broad* Q² range without waiting for rare high-Q² events

Q2 distribution, π^+ tracks, p_{γ}^{lab} > 0.10, W>3.00, x_p > 0.00, 0.01<y<0.95, 0.20<z<0.90

C. Dilks

Continuous Integration (CI)

	Download from S3 Compile the code	Analysis kinematics reconstruction	Post-Processing plots, comparisons, etc.	Finalize
	Matrix: delphes_fastsim	Matrix: analysis_fastsim	Matrix: comparison	
S 3	🥥 4 jobs completed	🔹 🥥 8 jobs completed	🔹 🥥 14 jobs completed	Collect 5m 25s
	Show all jobs	Show all jobs	Show all jobs	Output
	Matrix: download_fullsim	Matrix: analysis_fullsim	Matrix: postprocess	Plots
S3	3 jobs completed	 24 jobs completed 	🕐 🥝 36 jobs completed 💿	
	Show all jobs	Show all jobs	Show all jobs	
	Sm 32s	Runs for every "git com	mit" (on a pull request)	
	build_no_delphes 4m 37s	 Job matrices for: Data sources [ePIC, ePIC runs include ra Recon method [election] 	ECCE, ATHENA, Pythia → Delphes dcor and no-radcor versions tron, DA, JB,]	
		Typically takes ~50 min		
C	C. Dilks	epic-anal	ysis	

Continuous Integration (CI)

Artifacts = CI output plots (and more)
Final set of plots in '_FULL_RESULTS'
Must be logged into GitHub to access

Example artifacts (high statistics):

https://github.com/eic/epic-analysis/actions/runs/3853010345

Artifacts Produced during runtime		
Name	Size	
	61.1 MB	
🕥 analysis	110 MB	
😚 comparison	50.9 MB	
🕎 postprocess	165 MB	
x_build_all Expired	128 MB	

FULL RESULTS.zip 🛑 bin test.Ele 🚞 comparison.EPIC.coverage p eta.Ele comparison.EPIC.coverage x q2.allReconMethods comparison.EPIC.resolution p eta.Ele comparison.EPIC.resolution x q2.allReconMethods 🚞 comparison.LEGACY.coverage 🏿 p eta.Ele comparison.LEGACY.coverage x q2.allReconMethods comparison.LEGACY.resolution p eta.Ele comparison.LEGACY.resolution x q2.allReconMethods coverage2D p eta.Ele coverage2D_x_q2.allReconMethods 🚞 y_minima.Ele

C. Dilks

Productions used for CI

ePIC 22.11.3

- S3/eictest/EPIC/RECO/22.11.3/epic_{arches,brycecanyon}/SIDIS/pythia6
- With and without radiative corrections

♦ ECCE 22.1

S3/eictest/EPIC/Campaigns/22.1/SIDIS/pythia6

ATHENA DeathValley 1.0

S3/eictest/ATHENA/RECO/deathvalley-v1.0/DIS/NC

Delphes – Fast Simulations

- HEPMC files from S3/eictest/EPIC/EVGEN/SIDIS/pythia6
- Run through Delphes (CI job)
- Using the sample with radiative corrections
- Uses legacy ATHENA settings needs to be updated!!

Event Selection for CI

W > 3 GeV 0.01 < y < 0.95 0.2 < z < 0.9 $x_F > 0$ $p_T(\text{lab}) > 0.1 \text{ GeV}$

Focusing on 18x275 (for now)

Testing all available reconstruction methods
Histograms in bins of

- (X, Q²)
- (η, p)

In the interest of time, for these slides:

- Distributions and resolutions of: x, p_T , z, ϕ_h
- · Also focusing on the Electron reconstruction method

C. Dilks

ePIC vs. ePIC

	Arches	Bryce Canyon
With radiative corrections	•	•
Without radiative corrections	•	•

ePIC vs. Legacy

CI allows us to make regular comparisons of ePIC configurations, effects from radiative corrections, and ePIC with legacy designs (ATHENA and ECCE)

C. Dilks

x distributions

CI Comparisons - ePIC vs. Legacy

x distributions

p_{τ} distributions

CI Comparisons - ePIC vs. Legacy

p_{τ} distributions

z distributions

CI Comparisons - ePIC vs. Legacy

z distributions

EPIC Arches EPIC BryceCanyon 10³ ----- EPIC Arches (radcor) - - EPIC BryceCanyon (radcor) 10² 10 1 10⁻³ 10⁻² 10⁻¹ **1**

C. Dilks

Q^{2}

epic-analysis

24

 ϕ_h distributions

CI Comparisons – ePIC vs. Legacy

 ϕ_h distributions

x resolutions

CI Comparisons - ePIC vs. Legacy

x resolutions

p_{T} resolutions

CI Comparisons - ePIC vs. Legacy

p_{T} resolutions

z resolutions

CI Comparisons - ePIC vs. Legacy

Delphes Pythia6 (radcor) EPIC Arches (radcor) 10³ ----- ATHENA --- ECCE 10² 10 1 Z-Ztrue/Ztrue Z-Z_{true}/Z_{true} z-z_{true}/z_{true} 7-7. 17 10⁻³ 10⁻² 10⁻¹ x

C. Dilks

Q^{2}

epic-analysis

z resolutions

EPIC Arches EPIC BryceCanyon 10³ EPIC Arches (radcor) ---- EPIC BryceCanyon (radcor) 10² 10 1 10⁻³ 10⁻² 10⁻¹ x

C. Dilks

Q^{2}

epic-analysis

32

 ϕ_h resolutions

CI Comparisons - ePIC vs. Legacy

Future Support: Dihadrons

Work in Progress: https://github.com/eic/sidis-eic/pull/192

• Kinematics – done, but needs validation / cross check

1.2

Inclusive Pairing – done, but needs validation ٠

 θ vs. P. distribution, $\pi^{+}\pi^{-}$ dihadrons, W>3.00, 0.01<v<0.95

C. Dilks

9000

8000

7000

6000

5000 4000

3000 2000

1000

0 0.2

0.4

0.6

0.8

Future Support: Jets

Already supported in Delphes analysis chain, using <u>fastjet</u> anti-k_τ

100 100 [rue E [GeV] True E [GeV] . . 90 80 الاحداثانا والمراجع والمتحد والمتلتف والمتلافين 96523 90E Entries 44587 Entries 20.01 Mean x 10 30.32 Mean x Mean y 21.09 80F Mean y 32.33 10 Std Dev x 17.28 Std Dev x 18.95 Std Dev y 18.64 70F 70F Std Dev y 20.33 60 E 60 = 10^{−1} 50 50 10-1 40 10-2 10⁻² 30 30E 20 20 10⁻³ 10 10⁻³ 10 0È 0E 10^{-4} 10-4 20 30 60 80 90 100 20 30 40 50 60 80 90 100 70 70 Reco E [GeV] Reco E [GeV]

True E vs. Reco E distribution, jets, -5.00<jet eta<5.00, jet p_>5.00, 0.01<y<0.95

True E vs. Reco E distribution, jets, 1.00<jet eta<5.00, jet p_>5.00, 0.01<y<0.95

Summary

epic-analysis

- Supports ePIC full simulation, Delphes fast simulation, and legacy ECCE and ATHENA productions
- Automates retrieval of data from S3 and Q² weighting
- Kinematics Reconstruction via various methods

Continuous Integration

- As a "slow" benchmark
- Comparisons of ePIC vs. ePIC and ePIC vs. Legacy

Short term plans

- Dihadrons
- Jets
- Scaling (support higher statistics)

backup

Handling Multidimensional Binning

- Problem: The need for multidimensional analysis caused deeply nested for loops to spread throughout epic-analysis
 - Not maintainable and not generalized
 - Very susceptible to bugs

```
for (auto z_bin : z_bins) {
  for (auto y_bin : y_bins) {
    action_before_x_Q2_subloop( z_bin, y_bin );
    for (auto Q2_bin : Q2_bins) {
      for (auto x_bin : x_bins) {
         action_for_each_bin( z_bin, y_bin, Q2_bin, x_bin );
      }
    }
    action_after_x_Q2_subloop( z_bin, y_bin );
```


Adage <u>https://github.com/c-dilks/adage</u>

- Solution: use a Directed Acyclic Graph (DAG)
 - Fully connected layers of 1D bins
 - One path from root node to leaf node == 1 multidimensional bin
 - "Control nodes" store lambdas, executable during depth-first traversal

// define lambdas
action_before_x_Q2_subloop = ... ;
action_after_x_Q2_subloop = ... ;
action_for_each_bin = ... ;

// attach lambdas to the DAG

```
P->Op()->BeforeSubloop( {"x","q2"}, action_before_x_Q2_subloop );
P->Op()->AfterSubloop( {"x","q2"}, action_after_x_Q2_subloop );
P->Op()->Payload( action_for_each_bin );
```

// run
P->Execute();

C. Dilks