Analysis of double spin asymmetry ALL

Charlotte Van Hulse, UAH

ePIC collaboration meeting

Analysis of longitudinal double-spin asymmetry

- SIDIS data generated with PYTHIA-6 : 5x41 GeV² and $18 \times 275 \mathrm{GeV}^{2}$
- Full reconstruction through GEANT simulation (ECCE July concept)
- DIS cuts: $\mathrm{Q}^{2}>1 \mathrm{GeV}^{2} ; 0.01<\mathrm{y}<0.95$ and $\mathrm{W}^{2}>10 \mathrm{GeV}^{2}$

Analysis of longitudinal double-spin asymmetry

- SIDIS data generated with PYTHIA-6 : 5x41 GeV² and $18 \times 275 \mathrm{GeV}^{2}$
- Full reconstruction through GEANT simulation (ECCE July concept)
- DIS cuts: $Q^{2}>1 \mathrm{GeV}^{2} ; 0.01<y<0.95$ and $\mathrm{W}^{2}>10 \mathrm{GeV}^{2}$
- Weighting of events at parton level at NLO:

$$
1+\Lambda D(y) \frac{\Delta \otimes D^{q, g \rightarrow h}}{F_{U U}^{h}}
$$

- $\Lambda= \pm 1$: relative beam helicity orientation
- Δ : DSSV14 helicity distributions
- $D^{q, g \rightarrow h}$ DSS14 pion and kaon fragmentation function
- Unpolarised Fưu: NNPDF30_nlo_as_0118 and DSS14 FFs
- Weighting only for pythia processes: 99, 131-136
- For ratio of longitudinal and transverse γ^{*} cross section in D(y): Phys. Lett. B, 452:194-200, 1999
- $D(y)$ set to 1 for evaluation of systematics

Analysis of longitudinal double-spin asymmetry

$$
\begin{aligned}
& =D(y) A_{1}^{h}\left(x_{B}, Q^{2}, z\right) \text {, }
\end{aligned}
$$

- Assume constant e and p beam polarisations of 70% with with 2% uncertainty
- $\mathrm{A}_{1} \rightarrow$ access to convolution of helicity distributions and FFs

Generated and reconstructed $A_{1}(D(y)=1)$

Systematic uncertainties

Systematic uncertainties

Asymmetries

Influence of the magnetic field

- Kinematic coverage

Influence of the magnetic field

- Statistical uncertainty

Impact plots

Based on reweighing technique.

Summary and conclusion for ECCE studies

- Proposed EIC detector appropriate for study of SIDIS and extraction of A_{1} with broad kinematic coverage and good precision
- Lower magnetic field brings some advantage at low x_{B} but 1.4 T or 3.0 T both appropriate

