Analysis of double spin asymmetry ALL

Charlotte Van Hulse, UAH

ePIC collaboration meeting 09-11 January 2023

Analysis of longitudinal double-spin asymmetry

- SIDIS data generated with PYTHIA-6: 5x41 GeV² and 18x275 GeV²
- Full reconstruction through GEANT simulation (ECCE July concept)
- DIS cuts: Q²>1 GeV²; 0.01<y<0.95 and W²>10 GeV²

Analysis of longitudinal double-spin asymmetry

- SIDIS data generated with PYTHIA-6: 5x41 GeV² and 18x275 GeV²
- Full reconstruction through GEANT simulation (ECCE July concept)
- DIS cuts: Q²>1 GeV²; 0.01<y<0.95 and W²>10 GeV²
- Weighting of events at parton level at NLO:

$$1 + \Lambda D(y) \frac{\Delta \otimes D^{q,g \to h}}{F_{UU}^{h}}$$

- $\Lambda=\pm 1$: relative beam helicity orientation
- Δ: DSSV14 helicity distributions
- $D^{q,g o h}$ DSS14 pion and kaon fragmentation function
- Unpolarised F_{UU}: NNPDF30_nlo_as_0118 and DSS14 FFs
- Weighting only for pythia processes: 99, 131-136
- For ratio of longitudinal and transverse γ* cross section in D(y): Phys. Lett. B, 452:194–200, 1999
- D(y) set to 1 for evaluation of systematics

Analysis of longitudinal double-spin asymmetry

$$A_{\parallel}^{h}(x_{B},Q^{2},z) = \frac{1}{P_{e}P_{p}} \frac{\stackrel{\longrightarrow}{\stackrel{N}{\stackrel{h}{\Longrightarrow}}} - \stackrel{\longleftarrow}{\stackrel{N}{\stackrel{h}{\Longrightarrow}}}}{\stackrel{\longrightarrow}{\stackrel{L}{\Longrightarrow}}} (x_{B},Q^{2},z)$$

$$= D(y)A_{1}^{h}(x_{B},Q^{2},z),$$

- Assume constant e and p beam polarisations of 70% with with 2% uncertainty
- A₁ → access to convolution of helicity distributions and FFs

Generated and reconstructed A_1 (D(y)=1)

Systematic uncertainties

Systematic uncertair

Asymmetries

Kinematic coverage

Influence of the magnetic field

Statistical uncertainty

Impact plots

Based on reweighing technique.

Summary and conclusion for ECCE studies

 Proposed EIC detector appropriate for study of SIDIS and extraction of A₁ with broad kinematic coverage and good precision

• Lower magnetic field brings some advantage at low x_B but 1.4 T or 3.0 T both appropriate