Extraction of the Weak Mixing Angle at the EIC Michael Nycz

Radja Boughezal, Alexander Emmert, Tyler Kutz, Frank Petriello, Kağan Şimşek, Daniel Wiegand, and Xiaochao Zheng

> ePIC Collaboration Meeting January 9-11 2023

Work supported by DOE grant DE-SC0014434

Electro-Weak & BSM Physics at the EIC

- Primary focus of the EIC is to address "fundamental questions in science"
 - Origin of nucleon spin & nucleon mass
 - 3-dimensional structure of protons and nuclei

Electro-Weak & BSM Physics at the EIC

- Primary focus of the EIC is to address "fundamental questions in science"
 - Origin of nucleon spin & nucleon mass
 - 3-dimensional structure of protons and nuclei
- EIC beam and detector design
 - Wide kinematic coverage
 - High luminosity
 - Polarized lepton & hadron beams
 - Capacity for fast spin-flip

Opportunity to study Electroweak and BSM physics

Electro-Weak & BSM Physics at the EIC

- Primary focus of the EIC is to address "fundamental questions in science"
 - Origin of nucleon spin & nucleon mass
 - 3-dimensional structure of protons and nuclei
- EIC beam and detector design
 - Wide kinematic coverage
 - High luminosity
 - Polarized lepton & hadron beams
 - Capacity for fast spin-flip
- Electroweak and BSM physics at the EIC
 - Dark photon search
 - Charged lepton flavor violation (CLFV): See talks by Bardh Quni and Emanuele Mereghetti
 - Provide constraints on $\sin^2 \theta_W$ over a wide Q^2 range

Opportunity to study Electroweak and BSM physics

Neutral Current Electroweak Physics Studies at the EIC

Parity-Violating Deep Inelastic Scattering Asymmetry

$$\boldsymbol{A_{PV}^{(e)}} \equiv \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{d\sigma_e}{d\sigma_0}$$

 $\frac{d^{2}\sigma_{0}}{dxdy} = \frac{4\pi\alpha^{2}}{xyQ^{2}} \left\{ (1-y) \left[F_{2}^{\gamma} - g_{V}^{e}\eta_{\gamma Z}F_{2}^{\gamma Z} + \left(g_{V}^{e^{2}} + g_{A}^{e^{2}} \right)\eta_{Z}F_{2}^{Z} \right] + xy^{2} \left[F_{1}^{\gamma} - g_{V}^{e}\eta_{\gamma Z}F_{1}^{\gamma Z} + \left(g_{V}^{e^{2}} + g_{A}^{e^{2}} \right)\eta_{Z}F_{1}^{Z} \right] - \frac{xy}{2} (2-y) \left[g_{A}^{e}\eta_{\gamma Z}F_{3}^{\gamma Z} - 2g_{V}^{e}g_{A}^{e}\eta_{Z}F_{3}^{\gamma Z} \right] \right\}$ $\frac{d^{2}\sigma_{e}}{dxdy} = \frac{4\pi\alpha^{2}}{xyQ^{2}} \left\{ (1-y) \left[g_{A}^{e}\eta_{\gamma Z}F_{2}^{\gamma Z} - 2g_{V}^{e}g_{A}^{e}\eta_{Z}F_{2}^{Z} \right] + xy^{2} \left[g_{A}^{e}\eta_{\gamma Z}F_{1}^{\gamma Z} - 2g_{V}^{e}g_{A}^{e}\eta_{Z}F_{1}^{Z} \right] + \frac{xy}{2} (2-y) \left[g_{V}^{e}\eta_{\gamma Z}F_{3}^{\gamma Z} - \left(g_{V}^{e^{2}} + g_{A}^{e^{2}} \right)\eta_{Z}F_{3}^{Z} \right] \right\}$

$$\frac{\text{Parity Violating Asymmetry}}{A_{RL}^{e^{-}}} = \frac{|\lambda|\eta_{\gamma Z} \left[g_{A}^{e} 2yF_{1}^{\gamma Z} + g_{A}^{e} \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^{2}xy}{Q^{2}}\right)F_{2}^{\gamma Z} + g_{V}^{e} (2-y)F_{3}^{\gamma Z}\right]}{2yF_{1}^{\gamma} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^{2}xy}{Q^{2}}\right)F_{2}^{\gamma} - \eta_{\gamma Z} \left[g_{V}^{e} 2yF_{1}^{\gamma Z} + g_{V}^{e} \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^{2}xy}{Q^{2}}\right)F_{2}^{\gamma Z} + g_{A}^{e} (2-y)F_{3}^{\gamma Z}\right]}$$

 $g_A^{e(q)}$ and $g_V^{e(q)}$: axial and vector neutral weak couplings of the electron (quark)

Where

$$\begin{bmatrix}F_{2}^{\gamma}, F_{2}^{\gamma z}, F_{2}^{z}\end{bmatrix} = x \sum_{q} [e_{q}^{2}, 2e_{q} g_{V}^{q}, (g_{V}^{q})^{2} + (g_{A}^{q})^{2}](q + \bar{q})$$

$$\begin{bmatrix}F_{3}^{\gamma}, F_{3}^{\gamma z}, F_{3}^{z}\end{bmatrix} = x \sum_{q} [0, 2e_{q} g_{A}^{q}, 2g_{V}^{q} g_{A}^{q}](q - \bar{q})$$

$$g_{A}^{e} = -\frac{1}{2} \qquad g_{A}^{q} = \pm \frac{1}{2}$$

$$g_{V}^{e} = -\frac{1}{2} + 2\sin^{2}\theta_{W} \qquad g_{V}^{q} = \pm \frac{1}{2} - 2e_{q}\sin^{2}\theta_{W}$$

$$\eta_{\gamma Z} = \frac{G_{F}Q^{2}}{2\sqrt{2}\pi\alpha} \frac{M_{Z}^{2}}{M_{Z}^{2} + Q^{2}}$$

4

Electroweak Neutral Current Study: Extraction of the Weak Mixing Angle

- Carried out a detailed study using both deuteron and proton beams
 - High precision data at the EIC makes the extraction of $\sin^2 \theta_W$ from the proton possible
- Analysis uses realistic uncertainties for both theoretical and experimental systematics
 - CT18NLO, MMHT2014, and NNPDF31 PDF sets
- Results recently published
 - Phys. Rev. D 106: <u>Neutral-Current Electroweak Physics and SMEFT Studies at the EIC</u>

Simulation and Event Selection

Simulation

- Djangoh 4.6.16 combined with fastsmearing from single-electron gun simulation
- Modified user routine of Djangoh to calculate counts and size of A_{pv}
- Events unfolded to leptonic truth using Rmatrix inversion method
- 20M events per energy/beam setting

Event selection

- Q²_{det}>1.0 GeV²
- y_{det}>0.1 & y_{det}<0.9
- η_{det} >-3.5 and η_{det} <3.5

Simulated Settings

Dn

	Electron Energy [GeV]	Proton Energy [GeV]	Annual Luminosity [fb ⁻¹]		Electron Energy [GeV]	Deuteron Energy [GeV]	Annual Luminosity [fb ⁻¹]
	5	41	4.4		5	41	4.4
	5	100	36.8		5	100	36.8
	10	100	44.8		10	100	44.8
	10	275	100		10	137	100
	18	275	15.4		18	137	15.4
+	18	275	100				

EIC Yellow Report Setting

 $\sin^2 \theta_W$ extracted from each of the pseudo-data sets

PUP

Pseudo-Data

- 1. In each bin (\sqrt{s}, Q^2, x)
 - Nominal PDF set used to calculate A_{PV}^{theo}

 $\sin^2 \theta_W = 0.231$ used in generation of pseudo-data

2. Pseudo-experimental asymmetry generated utilizing the statistical and systematic uncertainties

Pseudo-Data

- 1. In each bin (\sqrt{s}, Q^2, x)
 - Nominal PDF set used to calculate A_{PV}^{theo}

 $\sin^2 \theta_W = 0.231$ used in generation of pseudo-data

2. Pseudo-experimental asymmetry generated utilizing the statistical and systematic uncertainties

$$(A_{PV})_{b}^{pseudo} = (A_{PV})_{SM,b}^{theo} + r_{b} \sqrt{\sigma_{stat}^{2} + \left[(A_{PV})_{SM,b}^{theo} \left(\frac{\sigma_{sys}}{A} \right)_{b} \right]^{2} + r' \sqrt{\left[(A_{PV})_{SM,b}^{theo} \left(\frac{\sigma_{pol}}{A} \right)_{b} \right]^{2}}$$

Uncorrelated uncertainties Correlated uncertainties

r_b and *r'*: random number drawn from Normal distribution *r'* common across all bins

Experimental Uncertainties

)

- Statistical: $dA_{stat} = \frac{1}{\sqrt{N}}$
- Systematics
 - Background: $\frac{\sigma_{bg}}{A} = 1\%$

• Polarimetry:
$$\frac{\sigma_{pol}}{A} = 1\%$$

(e⁻ beam polarization = 80%)

Diagonal Terms

$$\sigma_b^2 = \sigma_{\text{stat},b}^2 + \left[(A_{\text{PV}})_{\text{SM},0,b}^{\text{theo}} \left(\frac{\sigma_{\text{sys}}}{A} \right)_b \right]^2 + \left[(A_{\text{PV}})_{\text{SM},0,b}^{\text{theo}} \left(\frac{\sigma_{\text{pol}}}{A} \right)_b \right]^2$$
Off-Diagonal Terms

$$\sigma_b = (A_{\text{PV}})_{\text{SM},0,b}^{\text{theo}} \left(\frac{\sigma_{\text{pol}}}{A} \right)_b$$

Experimental Uncertainty Matrix

$$\Sigma_0^2 = \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 & \cdots & \sigma_1 \sigma_{N_{bin}} \\ & \sigma_2^2 & \cdots & \sigma_2 \sigma_{N_{bin}} \\ & & \ddots & \vdots \\ & & & & \sigma_{N_{bin}}^2 \end{bmatrix}$$

PDF Uncertainties

 PDF uncertainties were determined following the prescription of each PDF set (CT18NLO, MMHT2014, NNPDF31)

11

• Hessian $(\Sigma_{pdf}^2)_{bb'} = \frac{1}{4} \sum_{m=1}^{N_{pdf/2}} (A_{SM,2m,b}^{theo} - A_{SM,2m-1,b}^{theo}) (A_{SM,2m,b'}^{theo} - A_{SM,2m-1,b'}^{theo})$

Replica

$$\left(\Sigma_{pdf}^{2}\right)_{bb'} = \frac{1}{N_{pdf}} \sum_{m=1}^{N_{pdf}} \left(A_{SM,m,b}^{theo} - A_{SM,0,b}^{theo}\right) \left(A_{SM,m,b'}^{theo} - A_{SM,0,b'}^{theo}\right)$$

Extraction of the Weak Mixing Angle

$$A_{RL}^{e^-} = \frac{|\lambda|\eta_{\gamma Z} \left[g_A^e 2y F_1^{\gamma Z} + g_A^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right) F_2^{\gamma Z} + g_V^e (2-y) F_3^{\gamma Z}\right]}{2y F_1^{\gamma} + \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right) F_2^{\gamma} - \eta_{\gamma Z} \left[g_V^e 2y F_1^{\gamma Z} + g_V^e \left(\frac{2}{xy} - \frac{2}{x} - \frac{2M^2 xy}{Q^2}\right) F_2^{\gamma Z} + g_A^e (2-y) F_3^{\gamma Z}\right]}$$

• Extraction of $\sin^2 \theta_W$ from minimization of the χ^2 $\chi^2 = \left[A^{pseudo-data} - A^{theory}\right]^T (\Sigma^2)^{-1} \left[A^{pseudo-data} - A^{theory}\right]$

• A^{theory} is a function of $\sin^2 \theta_W$ via the weak neutral couplings

• Single parameter fit to extract $\rightarrow \sin^2 \theta_W$

Uncertainty Matrix

$$(\Sigma^{2})_{bb'} = (\Sigma^{2}_{0})_{bb'} + (\Sigma^{2}_{pdf})_{bb'}$$

Fit Results

ep better than eD; statistical and beam polarimetry uncertainties dominate; moderate precision in an unmeasured energy region, multi-year run would help

- We preformed a detailed study of the extraction of $\sin^2 \theta_W$ at the EIC using the ECCE detector design for both the proton and deuteron beams
 - Accounted for statistical, systematic, and PDF uncertainties and their correlations
 - Will update once ePIC simulations are ready for physics analysis
- Focused on statistical, beam polarimetry, and PDF uncertainties for ECCE study
 - Uncertainty due to unfolding to be studied
- The EIC has the potential to play an important role in Electroweak and BSM physics covering an energy scale between fixed target and collider experiments

Thank You

Summary of Results

ep Results

eD Results

$ep \ 5 \times 100$	$ep~10\times 100$	$ep~10\times 275$	$ep~18\times 275$	$ep \ 18 \times 275$
P2	P3	P4	P5	P6
36.8	44.8	100	15.4	(100 YR ref)
154.4	308.1	687.3	1055.1	1055.1
-0.00854	-0.01617	-0.03254	-0.04594	-0.04594
1.54%	0.98%	0.40%	0.80%	(0.31%)
1.55%	1.00%	0.43%	0.81%	(0.35%)
1.0%	1.0%	1.0%	1.0%	(1.0%)
1.84%	1.42%	1.09%	1.29%	(1.06%)
0.002032	0.001299	0.000597	0.001176	0.000516
0.002342	0.001759	0.001297	0.001769	0.001244
0.002388	0.001807	0.001363	0.001823	0.001320
0.002353	0.001771	0.001319	0.001781	0.001270
0.002351	0.001789	0.001313	0.001801	0.001308
	$\begin{array}{c} ep \ 5 \times 100 \\ P2 \\ 36.8 \\ 154.4 \\ -0.00854 \\ 1.54\% \\ 1.55\% \\ 1.0\% \\ 1.84\% \\ 0.002032 \\ 0.002342 \\ 0.002353 \\ 0.002351 \\ \end{array}$	$\begin{array}{cccc} ep \ 5 \times 100 \\ P2 \\ P3 \\ 36.8 \\ 154.4 \\ 308.1 \\ -0.00854 \\ -0.01617 \\ 1.54\% \\ 0.98\% \\ 1.55\% \\ 1.00\% \\ 1.0\% \\ 1.0\% \\ 1.42\% \\ 0.002032 \\ 0.001299 \\ 0.001759 \\ 0.002353 \\ 0.001771 \\ 0.002351 \\ 0.001789 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

$eD 5 \times 100$	$eD \ 10 \times 100$	$eD \ 10 \times 137$	$eD \ 18 \times 137$	$eD \ 18 \times 137$
D2	D3	D4	D5	N/A
36.8	44.8	100	15.4	(10 YR ref)
160.0	316.9	403.5	687.2	687.2
-0.01028	-0.01923	-0.02366	-0.03719	-0.03719
1.46%	0.93%	0.54%	1.05%	(1.31%)
1.47%	0.95%	0.56%	1.07%	(1.32%)
1.0%	1.0%	1.0%	1.0%	(1.0%)
1.78%	1.38%	1.15%	1.46%	(1.66%)
0.002148	0.001359	0.000823	0.001591	0.001963
0.002515	0.001904	0.001544	0.002116	0.002414
0.002558	0.001936	0.001566	0.002173	0.00247
0.002527	0.001917	0.001562	0.002128	0.002424
0.002526	0.001915	0.001560	0.002127	0.002423
	$\begin{array}{c} eD \ 5 \times 100 \\ D2 \\ 36.8 \\ 160.0 \\ -0.01028 \\ 1.46\% \\ 1.47\% \\ 1.0\% \\ 1.78\% \\ 0.002148 \\ 0.002515 \\ 0.002558 \\ 0.002527 \\ 0.002526 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Tables from: Phys. Rev. D 106, 016006

EIC Yellow Report Setting

ep better than eD; statistical and beam polarimetry uncertainties dominate; moderate precision in an unmeasured energy region, multi-year run would help

Neutral Current Electroweak Physics Studies at the EIC

Simulation:

Fast-smearing performed on:

- Electron momentum, polar and azimuthal angles (θ, ϕ)
 - RMS of fast smearing spectra
- Provides for reliable projections
 - Limitation: selection of hadronic state not implemented
 - Could provide better identification
 DIS events

