Searches of CLFV: the EIC vs. low-energy experiments

Emanuele Mereghetti

ePIC Collaboration Meeting, January 11th 2023

with V. Cirigliano, K. Fuyuto, C. Lee, B. Yan arXiv:2102.06176

< □ > < @ > < 注 > < 注 > ... 注

The Electron-Ion Collider: an intensity frontier machine?

from A. Deshpande, hacked by C. Lee

Finding BSM:

- 1. directly produce new particles (LHC)
- 2. search for processes with no/very precise SM background

Where does the EIC fit in?

- EIC will deliver a lot of data! 1000 × HERA
- with additional unique possibility to polarize e and proton beams

look for rare/BSM processes? competitive with LHC/low energy?

Charged lepton flavor violation

mismatch between quark weak and mass eigenstates

 \implies quark family number is not conserved

same mismatch for charged leptons, but suppressed by neutrino masses!

$$\mathrm{BR} \sim \left(\frac{m_{\nu}}{m_W}\right)^4 \sim 10^{-44}$$

S. Petcov, '77; W. Marciano and A. Sanda, '77

• ... however, models that explain m_{ν} usually introduce new CLFV e.g. type I, II and III see-saw A. Abada, C. Biggio, F. Bonnet, M. B. Gavela, T. Hambye, '08

CLFV experiments crucial to falsify TeV origin of m_{ν}

CLFV at low- and high-energy

- $\mu \leftrightarrow e$ transitions well constrained at low-energy (hopeless?)
- $\mu \leftrightarrow \tau$ interesting, but not for EIC
- $\tau\leftrightarrow e \text{ transitions}$
 - 1. τ and meson decays
 - 2. pp collisions
 - 3. & the upcoming EIC

M. Gonderinger and M. Ramsey-Musolf; V. Cirigliano et al.; J. Zhang, S. Mantry, et al.;

and two Snowmass white papers 2203 13199, 2203.14919

 $\tau \to e\gamma, \tau \to e\pi\pi, \tau \to eK\pi, B \to \pi\tau e, \ldots$

 $pp \rightarrow e\tau, h \rightarrow \tau e, t \rightarrow q\tau e \dots$

The Standard Model Effective Field Theory

SMEFT convenient framework to compare different probes

... with some caveats ...

イロン 不良 とくほど 不良 とうほ

- SM fields, no new light degrees of freedom (e.g. no ν_R)
- local $SU(3)_c \times SU(2)_L \times U(1)_Y$ invariance
- organize them in a power counting based on canonical dimension

1. no CLFV at dim. 4 2. GIM suppression at dim. 5, BR $\sim (m_{\nu}/m_W)^4$

SMEFT for CLFV

1. LFV Z couplings, & γ , Z dipole and Yukawa couplings

$$\mathcal{L} = -\frac{g}{2c_w} Z_\mu \left[\left(c_{L\varphi}^{(1)} + c_{L\varphi}^{(1)} \right)_{\tau e} \bar{\tau}_L \gamma^\mu e_L + c_{e\varphi} \bar{\tau}_R \gamma^\mu e_R \right] - \frac{e}{2v} \left[\Gamma_\gamma^e \right]_{\tau e} \bar{\tau}_L \sigma^{\mu\nu} e_R F_{\mu\nu} - \left[Y_e' \right]_{\tau e} h \bar{\tau}_L e_R + \text{h.c.} \qquad C = \mathcal{O} \left(\frac{v^2}{\Lambda^2} \right)$$

<ロト<(ア・)</td>< ロト<(ア・)</td>> (ア・)5/22

SMEFT for CLFV

- 1. LFV Z couplings, & γ , Z dipole and Yukawa couplings
- 2. leptonic and semileptonic interactions
 - 7 Vector/Axial: $C_{L,Q}^{(1,3)}$, C_{eu} , C_{ed} , C_{Lu} , C_{Ld} , C_{Qe} 3 Scalar/Tensor: C_{LedQ} , $C_{LeQu}^{(1,3)}$

SMEFT for CLFV

- 1. LFV Z couplings, & γ , Z dipole and Yukawa couplings
- 2. leptonic and semileptonic interactions
- assume generic quark flavor structures

$$\begin{bmatrix} C_{Ld} \end{bmatrix}_{\tau e} = \begin{pmatrix} \begin{bmatrix} C_{Ld} \end{bmatrix}_{dd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{ds} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{db} \\ \begin{bmatrix} C_{Ld} \end{bmatrix}_{sd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{ss} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{sb} \\ \begin{bmatrix} C_{Ld} \end{bmatrix}_{bd} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{bs} & \begin{bmatrix} C_{Ld} \end{bmatrix}_{bb} \end{pmatrix}$$

• and integrate out the top quark

run (strongly) onto dipoles, Z couplings, and match onto $\bar{\tau} e G_{\alpha\beta} G^{\alpha\beta}$ ops.

CLFV Deep Inelastic Scattering & EIC sensitivity

◆□ > ◆□ > ◆三 > ◆三 > 三 - つくで

CLFV Deep Inelastic Scattering

- most cross sections in the 1-10 pb range, for $\Lambda = v$,
- heavy flavors c, b suppressed by factor ten
- large PDF uncertainties for heavy-flavor-initiated processes

τ at the EIC

- 1. $ep \rightarrow \tau X \rightarrow e + I\!\!E + X$
- 2. $ep \rightarrow \tau X \rightarrow \mu + E + X$

3. $ep \rightarrow \tau X \rightarrow X_h + \mathbf{E} + X$

(substantial) background from standard NC and CC DIS

• simulate 10^9 SM & 10^6 SMEFT events with Pythia8 + Delphes for EIC

thanks to Miguel Arratia!

Muon channel

- too much background in *e* channel, μ channel much more promising!
- in SM, μ come from hadron decays, typically at small p_T

$$p_T^{\mu} > 10 \,\text{GeV}, \quad I\!\!\!E_T > 15 \,\text{GeV}, \quad p_T^{j_1} > 20 \,\text{GeV}$$

eliminates all SM background

4 D F 4 B F 4 E

need muon detector?

• smaller signal efficiency for Z couplings, heavy quarks

Hadronic channel

• one " τ -tagged" jet, with 1 or 3 charged tracks, and close in ϕ to E_T

· recoils against a second jet, no charged leptons in final state

$$p_T^{j_1} > 20 \,\mathrm{GeV}, \quad p_T^{j_2} > 15 \,\mathrm{GeV}, \quad E_T > 15 \,\mathrm{GeV} \Longrightarrow \epsilon_{SM} = 10^{-5}$$

does not quite kill all SM background

cuts severely suppress heavy quark signals

EIC sensitivity to CLFV

• ϵ_{n_b} : signal efficiency for the cuts to reduce the SM background to n_b events At EIC with $\mathcal{L} = 100 \text{ fb}^{-1}$, $\sqrt{S} = 140 \text{ GeV}$, $n_{\text{obs}} = n_b$

• EIC can probe couplings at the $10^{-3} - 10^{-2}$ level in μ channel

can improve with "smarter" hadronic channel analysis

• no suppression for off-diagonal, e.g. $C_{cu} \sim C_{uu}$

Complementary probes: the LHC

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Z, Higgs and Top decays

1. $Z \rightarrow \tau e$: studied at LEP and LHC, % level constraints on $c_{L\varphi}$, $c_{e\varphi}$ 2. $H \rightarrow \tau e$: strong constraints ATLAS and CMS

$$\left|Y'_{e\tau, \, \tau e}\right| < 2.0 \cdot 10^{-3}$$

- 3. search for $t \to q\ell\ell'$ at ATLAS, mostly sensitive to $t \to q\mu e$
- worked with C. A. Gottardo extract $BR(t \rightarrow qe\tau) < 2.2 \cdot 10^{-4}$
- phase space suppression implies weak $\sim 10\%$ bounds

CLFV in high-invariant mass Drell-Yan

- if $\Lambda \gtrsim 3 4$ TeV, use same SMEFT operators as EIC
- simulate SMEFT operators at NLO in QCD (POWHEG + Pythia8 + Delphes)
- signal from four-fermion enhanced at large $m_{\tau e}$, indep. of Lorentz structure

CLFV at the LHC

- LHC probes SMEFT coefficients at a similar level as EIC
- a. bounds from tail of $m_{e\tau}$ distribution, sensitive to SMEFT assumption! weaker by ~ 2 if BSM particles in *t*-channel with $M \sim 1 - 2$ TeV
- b. DY sensitive to sum of flavors tagging heavy flavors at EIC unique way to identify BSM mechanism

CLFV at low energy

Match & run operators from EIC to scales relevant to τ/B decays

• Z couplings, γ dipole, 4-fermion operators with light quark match at tree level,

running not important

vector/axial operators with heavy quarks run onto light-quark at one loop

 10^{-2} - 10^{-3} suppression, but only vector contribute

- tensor operators run onto dipole, proportional to m_q
- scalar match onto dim-7 GG operators, further suppressed by Λ_{QCD}/m_q

 \checkmark = tree \checkmark = loop

- τ branching ratios in the $\sim 10^{-7}$ - 10^{-8} range
- non-perturbative input mostly under control (some model dep. in K^+K^-)
 - A. Celis, V. Cirigliano, E. Passemar, '14, V. Cirigliano, A. Crivellin, M. Hoferichter, '18
 - E. Passemar private comm., K. Beloborodov, V. Druzhinin, S. Serednyakov, '19
- *B* branching ratios $\sim 10^{-5}$, decay constants and form factors from LQCD

Belle II will improve τ BR by $\sim 10 - 100$ see 2203 14919

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

High-energy vs low-energy: dipole, Yukawa and Z

- V. Cirigliano, K. Fuyuto, C. Lee, EM, B. Yan, '21
- no competition on γ and Z dipole operators
- strong direct LHC bound on Y'
- $\tau \to e\pi\pi$ dominates Z couplings

High-energy vs low-energy: four-fermion

Upper limit on LFV coupling and lower limit on new physics scale

- uu $\tau \to e\pi\pi$ stronger by ~ 5, EIC and LHC competitive with $\tau \to e\pi$
- cc low-energy loop suppressed, EIC can do better than LHC
- tt surprisingly strong constraints from τ decays
- EIC & LHC crucial for off-diagonal

High-energy vs low-energy: four-fermion

- EIC very competitive on bb component
- and with B decays
- similar conclusions for scalar/tensor operators

Scenario A $[C_{\mathrm{LQ},D}]_{\mathrm{dd}}\times10^3$ EIC(E 0.2) -2 -6 -4 0 $[C_{\text{LO},U}]_{\text{uu}} \times 10^3$

Towards a global fit

$$C_{LQU} = \operatorname{diag}([C_{LQU}]_{uu}, 0, 0)$$

$$C_{LQD} = \operatorname{diag}([C_{LQD}]_{dd}, [C_{LQD}]_{ss}, 0)$$

$$C_{Lu} = \operatorname{diag}([C_{Lu}]_{uu}, 0, 0)$$

$$C_{Ld} = \operatorname{diag}([C_{Ld}]_{dd}, [C_{Ld}]_{ss}, 0)$$

$$c_{L\varphi}$$

イロト イヨト イヨト イヨト

- $\pi\pi$ mode dominates, can weaken the limits with multiple couplings
- turn on all V/A couplings to L leptons & light quarks
- isoscalar, vector couplings not well constrained,

$$[C_{LQ U}]_{uu} + [C_{LQ D}]_{dd} + [C_{Lu}]_{dd} + [C_{Ld}]_{dd}$$

no cancellation at colliders

Towards a global fit

 $C_{LQD} = \operatorname{diag}([C_{LQD}]_{dd}, [C_{LQD}]_{ss}, [C_{LQD}]_{bb})$

ヘロン 人間 とくほ とくほ とう

$$C_{Ld} = \operatorname{diag}([C_{Ld}]_{dd}, [C_{Ld}]_{ss}, [C_{Ld}]_{bb})$$

- turn on all V/A couplings to L leptons & d-type quarks
- contributions to hadronic τ decays cancel for $[C_{Ld}]_{bb} \sim -[C_{LQD}]_{bb}$
- $\tau \to e \ell^+ \ell^-$ weaker than current LHC and project EIC

low energy not sufficient to constrain full parameter space need complementary info from EIC!

$e \rightarrow \mu$ conversion

• similar (simpler) analysis for $e \rightarrow \mu$ operators

assuming μ reconstruction as good as electron

• very strong constraints from $\mu \rightarrow e$ conversion in nuclei

also on heavy flavor operators

• but there are unconstrained directions, e.g. b axial couplings

$$\bar{\mu}_{L,R}\gamma^{\mu}e_{L,R}\,\bar{b}\gamma_{\mu}\gamma_{5}b$$

Future directions

22/22

- CLFV can unveil/constrain mechanism for neutrino mass generation
- EIC competitive and complementary to LHC and B factories
- 1. Z couplings
- 2. four-fermion with heavy quarks and quark-flavor-changing ops.

To do:

- 1. extend the calculation to NLO in QCD, especially for heavy quarks
- 2. detailed study of the hadronic channel $\tau \to X_h \nu_{\tau}$
- 3. detailed study of heavy quark channels improve ϵ with *b* tagging, ...
- 4. work towards a global fit
- 5. ...

Back up

★ロト ★御と ★注と ★注と 注

CLFV Deep Inelastic Scattering

at tree level

$$\frac{1}{\sigma_0}\frac{d\sigma}{dx\,dy} = \sum_i \left[(1 - \lambda_e) \left(\hat{\sigma}_{\text{LL}} + \hat{\sigma}_{\text{LR}} \right) + (1 + \lambda_e) \left(\hat{\sigma}_{\text{RL}} + \hat{\sigma}_{\text{RR}} \right) \right] f_i(x, Q^2)$$

 λ_e : electron polarization

æ

《曰》 《圖》 《臣》 《臣》

• all operator info in partonic $\hat{\sigma}_{LL}$, $\hat{\sigma}_{LR}$, $\hat{\sigma}_{RL}$, $\hat{\sigma}_{RR}$

CLFV Deep Inelastic Scattering

e.g. LL vector like operators

$$\hat{\sigma}_{LL}^{u_i} = F_Z \left\{ \left| \left[c_{L\varphi}^{(1)} + c_{L\varphi}^{(3)} \right]_{\tau e} z_{u_L} + \frac{Q^2 + m_Z^2}{m_Z^2} \left[C_{LQ, U} \right]_{\tau e u_i u_i} \right|^2 + \sum_{j \neq i} \left| \frac{Q^2 + m_Z^2}{m_Z^2} \left[C_{LQ, U} \right]_{\tau e u_j u_i} \right|^2 \right\} \right.$$

$$F_Z = \frac{1}{4\epsilon_w^4 s_w^4} \frac{Q^4}{(Q^2 + m_Z^2)^2}$$

analogous to Z-exchange DIS

æ

・ロト ・四ト ・ヨト ・ヨト

Towards a global fit

$$\begin{split} C_{LQ\,U} &= \text{diag}([C_{LQ\,U}]_{uu}, 0, 0) \\ C_{LQ\,D} &= \text{diag}([C_{LQ\,D}]_{dd}, [C_{LQ\,D}]_{ss}, 0) \\ C_{Lu} &= \text{diag}([C_{Lu}]_{uu}, 0, 0) \\ C_{Ld} &= \text{diag}([C_{Ld}]_{dd}, [C_{Ld}]_{ss}, 0) \\ c_{L\varphi} \end{split}$$

《曰》 《聞》 《臣》 《臣》 三臣

- $\pi\pi$ mode dominates, can weaken the limits with multiple couplings
- turn on all V/A couplings to L leptons & light quarks
- isoscalar, vector couplings not well constrained,

$$[C_{LQ U}]_{uu} + [C_{LQ D}]_{dd} + [C_{Lu}]_{dd} + [C_{Ld}]_{dd}$$

no cancellation at colliders

CLFV and leptoquarks

leptoquarks are good candidate for BSM (ν masses, B anomalies, ...)

$$\mathcal{L} = ilde{\lambda}^{lpha a} ar{d}^{lpha}_R \ell^a_L ilde{S}^{\dagger}_{1/2} + ext{h.c.}$$

can explain ν masses if we add ν_R which interact with LQ

<ロ> (日) (日) (日) (日) (日)

• match onto *L*-lepton, *R d* quark operator

$$\left[C_{Ld}\right]_{\tau e d_i d_j} = \left(\frac{v}{2M_{LQ}}\right)^2 \left(\tilde{\lambda}^*\right)^{e d_i} \left(\tilde{\lambda}\right)^{\tau d_j}$$

• LQ charges are such that dipole vanishes

$$\left[\Gamma^{e}_{\gamma}\right]_{\tau e} = \left[\Gamma^{e}_{\gamma}\right]_{e\tau} = 0$$

Finding BSM: the precision frontier

competitive and complementary to the energy frontier

especially when probing violation of SM symmetries

◆□→ ◆□→ ◆三→ ◆三→ 三三

B and τ CLFV decays

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Decay mode	V	A	S	Р	T
	$q^{(0)}q^{(1)} \ s \ c \ b$	$q^{(0)}q^{(1)} s c b$	$q^{(0)}q^{(1)} \ s \ c \ b$	$q^{(0)}q^{(1)} \ s \ c \ b$	u c
$\tau \rightarrow e\gamma$					\checkmark
$ \tau \rightarrow e\ell^+\ell^- $	\checkmark				
$\tau \rightarrow e\pi^0$		\checkmark		\checkmark	
$\tau \rightarrow e\eta, \eta'$		\checkmark		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$	
$ \tau \rightarrow e\pi^+\pi^-$	\checkmark		\checkmark \checkmark \checkmark		\checkmark
$\tau \rightarrow eK^+K^-$	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$		\checkmark
	ds db sb cu	ds db sb cu	ds db sb cu	ds db sb cu	си
$\tau \rightarrow eK_S^0$		\checkmark		\checkmark	
$\tau^- \rightarrow e^- K \pi$	\checkmark		\checkmark		
$B^0 \rightarrow e \tau$		\checkmark		\checkmark	
$B^+ \rightarrow \pi^+ e \tau$	\checkmark		\checkmark		
$B^+ \to K^+ e \tau$	\checkmark		\checkmark		

- 1. uu, dd, ss well constrained by multiple channels for all Dirac structures
- V isoscalar uu + dd gives small and uncertain contrib. to $\tau \rightarrow eKK$

B and τ CLFV decays

◆ロ → ◆御 → ◆臣 → ◆臣 → ○ 臣 → のへで

Decay mode	V	A	S	Р	T
	$q^{(0)}q^{(1)} \ s \ c \ b$	$q^{(0)}q^{(1)} s c b$	$q^{(0)}q^{(1)} \ s \ c \ b$	$q^{(0)}q^{(1)} \ s \ c \ b$	u c
$\tau \rightarrow e\gamma$					\checkmark
$ \tau \rightarrow e\ell^+\ell^- $	\checkmark				
$\tau \rightarrow e\pi^0$		\checkmark		\checkmark	
$\tau \rightarrow e\eta, \eta'$		\checkmark		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$	
$ \tau \rightarrow e\pi^+\pi^-$	\checkmark		\checkmark \checkmark \checkmark		\checkmark
$\tau \rightarrow eK^+K^-$	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$		\checkmark
	ds db sb cu	ds db sb cu	ds db sb cu	ds db sb cu	си
$\tau \rightarrow eK_S^0$		\checkmark		\checkmark	
$\tau^- \rightarrow e^- K \pi$	\checkmark		\checkmark		
$B^0 \rightarrow e \tau$		\checkmark		\checkmark	
$B^+ \rightarrow \pi^+ e \tau$	\checkmark		\checkmark		
$B^+ \to K^+ e \tau$	\checkmark		\checkmark		

- 1. uu, dd, ss well constrained by multiple channels for all Dirac structures
- V isoscalar uu + dd gives small and uncertain contrib. to $\tau \rightarrow eKK$
- 2. bb, cc vectors run into light quark V via penguins; S, P match onto GG ops.
- no constraints on axial cc or bb components

B and τ CLFV decays

Decay mode	V	A	S	Р	T
	$q^{(0)}q^{(1)} \ s \ c \ b$	$q^{(0)}q^{(1)} s c b$	$q^{(0)}q^{(1)} \ s \ c \ b$	$q^{(0)}q^{(1)} \ s \ c \ b$	u c
$\tau \rightarrow e\gamma$					\checkmark
$ \tau \rightarrow e\ell^+\ell^- $	\checkmark				
$\tau \rightarrow e\pi^0$		\checkmark		\checkmark	
$\tau \rightarrow e\eta, \eta'$		\checkmark		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$	
$ \tau \rightarrow e\pi^+\pi^-$	\checkmark		\checkmark \checkmark \checkmark		\checkmark
$\tau \rightarrow eK^+K^-$	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$		$\checkmark \qquad \checkmark \checkmark \checkmark \checkmark$		\checkmark
	ds db sb cu	ds db sb cu	ds db sb cu	ds db sb cu	си
$\tau \rightarrow eK_S^0$		\checkmark		\checkmark	
$\tau^- \rightarrow e^- K \pi$	\checkmark		\checkmark		
$B^0 \rightarrow e \tau$		\checkmark		\checkmark	
$B^+ \rightarrow \pi^+ e \tau$	\checkmark		\checkmark		
$B^+ \to K^+ e \tau$	\checkmark		\checkmark		

- 1. uu, dd, ss well constrained by multiple channels for all Dirac structures
- V isoscalar uu + dd gives small and uncertain contrib. to $\tau \rightarrow eKK$
- 2. bb, cc vectors run into light quark V via penguins; S, P match onto GG ops.
- no constraints on axial cc or bb components
- 3. no constraints on cu, axial and pseudoscalar sb, bs,

 $B_s \rightarrow e\tau$ at Belle II and LHCb; $D \rightarrow e\tau$ at LHCb and BESIII

◆□ > ◆□ > ◆目 > ◆目 > ○ 目 ○ ○ ○ ○