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Future Trends
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Martin Savage (INT) “The next decade will be looked back upon as a truly
astonishing period in Nuclear Physics and in our understanding of
fundamental aspects of nature. This will be made possible by advances in
scientific computing and in how the Nuclear Physics community organizes
and collaborates, and how DOE and NSF supports this, to take full
advantage of these advances.”

Donald Geesaman (ANL, former NSAC Chair) “It will be joint progress of
theory and experiment that moves us forward, not in one side alone.”

Obvious path
• Sharing data early with theory. 

We can make a difference 
• AI/ML for autonomous control and experimentation is 

a tremendous opportunity.
• We need to bring AI/ML into EPIC (see the slides 

from the software & computing sessions). 
• Streaming readout using AI/ML as a new paradigm for 

seamless data processing from DAQ to analysis. 
Details on https://www.jlab.org/FTNPC

https://www.jlab.org/FTNPC


Our Vision for Software & Computing at the EIC  

Rapid turnaround of data for the physics analysis and to start the work on publications:  

• Problem Data for physics analyses and the resulting publications available after O(1year) due to complexity of NP 
experiments (and their organization). 

• Alignment and calibration of detector as well as reconstruction and validation of events time-consuming. 

• Goal Analysis-ready data from the DAQ system. 

• Solution Compute-detector integration with AI at the DAQ and analysis level. 
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Principle 2: 
We will have an unprecedented compute-detector 
integration:
• We aim for autonomous alignment and calibration.
• We aim for a rapid, near-real-time turnaround of the raw 

data to online and offline productions.

More details https://eic.github.io/activities/principles.html

https://eic.github.io/activities/principles.html


Streaming Readout: Trigger-less data acquisition 

Definition of Streaming Readout
• Data is digitized at a fixed rate with thresholds and zero suppression applied 

locally. 

• Data is read out in continuous parallel streams that are encoded with 
information about when and where the data was taken. 

• Event building, filtering, monitoring, and other processing is deferred until 
the data is at rest in tiered storage. 
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Advantages of Streaming Readout

• Simplification of readout (no custom trigger hardware and firmware): 
• Trigger-less readout: 

• Beneficial for experiments that are limited by event-pileup or overlapping signals from different 
events as well as multi-purpose experiments where one would anyway loosen triggers. 

• Data flow is controlled at source (and at no stage by back pressure). 

• Opportunity to streamline workflows. 

• Take advantage of other emerging technologies. 



Integration of DAQ, analysis and theory to optimize physics reach
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Research model with seamless data processing from DAQ to data analysis

• Building the best detector that fully supports streaming readout and AI/ML: 
• FastML for alignment, calibration, and reconstruction in near real time. 

• Applications and Techniques for Fast Machine Learning in Science (Front.Big Data 5 (2022) 787421)
• AI for intelligent decisions 

• For rapid turnaround of data for the physics analysis and to start the work on publications. 

Front-End Front End 
data

Front-End Front End 
data

Front-End Front End 
data

Data Processor Analysis 
data Theory

https://inspirehep.net/literature/1951634


Streaming Readout and (near) real-time processing
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Front-End Front End 
data

Front-End Front End 
data

Front-End Front End 
data

Data Processor Analysis 
data

Data Processor 
• Assembles data into physics events. 
• Outputs data suitable for physics analyses 

and the resulting publications. 

Features
• FastML

• Autonomous alignment
• Autonomous calibration
• Reconstruction
• Event filtering based on full event 

information
• Autonomous anomaly detection

• AI
• Responsive detectors
• Conscious experiment
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b3 LHCb Upgrade Dataflow

HLT1 challenge: reduce 5 TB/s to 70-200 GB/s in 
real-time with high physics efficiency

https://indico.jlab.org/event/420/


On-Beam Validation of Streaming Readout at Jefferson Lab

QCD with Electron Ion Collider II, December 18, 2022. 7
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Fig. 11 Diphoton invariant mass spectra. Top: standard
clustering algorithm (benchmark) and k-means, shown with
different configurations of the hyperparameters. Bottom: the
same with HDBSCAN.

gorithm to test the tuning of the hyperparameters (Fig.
11 shows only one particular case). For HDBSCAN we
also extend the clustering to the entire information avail-
able in the calorimeter (4D: x, y, t, E). Loose selection
criteria with fiducial cuts is applied consistently in all
cases in Fig. 11 to produce the corresponding dipho-
ton invariant mass spectra. With this simple and clean
dataset, the ⇡

0 yields obtained with the different meth-
ods are comparable, but k-means retained more back-
ground at lower mass value. As expected, the runtime
of k-means is comparable to the standard algorithm,
while HDBSCAN is 30% slower on average due to its
more complex calculations. On the other hand, HDB-
SCAN is a more suitable clustering strategy for more
complex data, as it handles high multiplicity, noise, and
complex topologies. No cuts on the membership proba-
bilities or outlier scores of the hits have been applied in
the HDBSCAN case — this is a promising opportunity
that is left for future studies. In Sec. 5.2.3, we will run
the AI-based clustering algorithms on data taken dur-
ing the SRO tests and provide a detailed description of
the accomplished analysis.

5 On-beam test results

5.1 Hall-D

Tests were performed parasitically during GlueX high-
luminosity runs with a 350 nA photon beam. The pro-
totype was irradiated with a 4.7GeV secondary elec-
tron beam centered with respect to the matrix central
crystal. Figure 12 shows a sketch of the experimental
setup.
Two different DAQ setups were used: triggered mode
(integrated into GlueX data acquisition), and streaming
readout. Tests with triggered DAQ were performed by
applying the same methodology described in Ref. [19].
The signal amplitude from each PMT was recorded by
an FADC whenever a lepton hit a PS hodoscope tile.
For SRO tests, each PMT signal was digitized by the
WaveBoard and streamed to TRIDAS software, where
a threshold equivalent to ⇠ 2GeV, defined a L1 event.

Fig. 12 Schematic of the prototype tests installed in the
Hall-D beamline behind the pair spectrometer

5.1.1 Data analysis and results

To validate the performance of the SRO DAQ chain, we
compared the energy resolution obtained in triggered
and SRO mode. The SRO data analysis was performed
within the JANA2 framework, where a dedicated clus-
tering algorithm was implemented. Fig. 13 shows the
energy spectrum of the nine channels. The effect of the
L1 threshold is clearly visible for the central crystal.

The selection algorithm identified events with a large
energy deposited in the central crystals (assumed to
be the EM shower seed) and summed all hits in the
other channels within a time window of 100 ns. A cut
on the energy-weighted x-y hit position was used to
exclude events hitting the side crystals after a rough
inter-channel energy calibration (the procedure is the
same as described later for triggered mode). The clus-
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Fig. 20 Distribution of �� invariant mass. The two peaks
were fit with Gaussian functions (red dashed lines) plus a
quadratic polynomial function for the background (blue line).
The green line represents the overall fit. As discussed in
Fig. 17, the lower mass peak corresponds to the Al window,
the larger mass peak to the Pb target.

second peak, determined by integrating the respective
Gaussian function from �3 to 3�, were found to be
966 ± 164 and 1378 ± 275, respectively. The latter is
in agreement within 30% of the theoretical expectation
for generated ⇡

0 by the interaction of the beam with
the lead target via real and virtual photoproduction
mechanisms. The former exceeds the expected yield re-
lated to the production from the two Al windows by a
factor ⇠ 4. This discrepancy could be due to the pres-
ence of other materials placed near the two Al windows
(e.g. glue, mechanical support) contributing to the ⇡

0

production and consequently increasing the measured
yield.

5.2.4 JLAB SRO-DAQ performance

During the Run-2 tests, a study of SRO DAQ perfor-
mance was conducted. From the front-end, a data rate
of about 800 MB/s per uplink was measured with no
data frame dropping (100% livetime). Since the setup
consisted of 3 VXS crates with 6 fiber uplinks, the total
data rate reached up to 4 GB/s.
To study the performance of the back-end, the front-
end thresholds and TriDAS parameters (i.e. the num-
ber of instances of HMs and TCPUs) were varied. Dur-
ing tests, the memory occupancy and the CPU load per
TriDAS process were checked against the data through-
put. An uneven distribution of data sources was found
to have a significant impact on TriDAS performance.
This is not a surprise, since the system was originally

designed for a neutrino telescope, where all detection
elements produce almost the same data throughput,
providing a well distributed and balanced load to the
HM. The best performance was achieved with a single
memory assignment to fulfill the requirements of ev-
ery instantiated HM. However, throughput homogene-
ity is not guaranteed in CLAS12 streams. The topol-
ogy of the physics events created sizeable gradients in
the throughput across different sectors of the FT-CAL
and FT-HODO detectors. The first version of the Tri-
DAS implementation, which is not yet optimized, han-
dles this problem by dimensioning all memory buffers
according to the maximum size necessary to accommo-
date the largest data stream. This of course biases the
measured memory occupancy.
The front-end thresholds were varied to provide a data
throughput ranging from a few tens of Mbit/s up to al-
most 100Mbit/s. The HM processes were instantiated
on one Linux server with 48 cores, 1 GHz each and
64 GB RAM. The number of HM instances per run
were raised from 5 HMs, 10 HMs and 20 HMs. The de-
tector was subdivided in 5, 10 and 20 sectors, accord-
ingly. The CPU load increased almost linearly with the
number of HM instances, 500%, 850% and 1600%, re-
spectively. This is implicit in the multi-threaded design
of TriDAS. Meanwhile, the HM memory occupancy re-
mained almost constant at about 12–1 GB per run. This
is consistent with the 500 kB/channel/timeslice buffer
size, and the fact that the number of HMs is inversely
proportional to the number of served channels per HM,
which is the total number of FT+Hodo channels, i.e. a
constant on the order of ⇠ 500.
Ten instances of TCPUs, each capable of handling 5
timeslices at time, run on two CPU servers. As men-
tioned in Sec. 4.3, the TCPU implements different trigger-
level algorithms. The Level 1 performance was found
to be strongly affected by hit sorting in the considered
timeslice. The profiling of this nonlinear performance
was reported in [11]. The Level 2 trigger was not al-
ways used, in order to determine the impact of running
TriDAS with or without the JANA algorithms. The
CPU load per TCPU instance ranged from 400% with-
out any JANA trigger, to 800% including the standard
clustering, the 1 : 10 scaler and the minimum bias selec-
tion algorithms, and, up to 1600% when processing the
AI clustering. Generally the memory usage remained
within 20–24 GB. However, it doubled when running
the AI algorithm, indicating the need for optimization.

Tests included AI-supported real-time tagging and selection algorithms (Eur.Phys.J.Plus 137 (2022) 8, 958)

• Standard operation of Hall-B CLAS12 
with high-intensity electron-beam 

• Streaming readout of forward tagger 
calorimeter and hodoscope

• Measurement  of inclusive π0

hadronproduction

• Prototype of EIC PbWO4 crystal 
EMCAL in Hall-D Pair Spectrometer

• Calorimeter energy resolution of SRQ 
compatible with triggered DAQ.

https://inspirehep.net/literature/2029146


Streaming Readout Workshop Series
Organized by EIC Streaming Readout Consortium

• Community efforts towards streaming readout at the EIC. 
• Established streaming readout as default for the E(P)IC detector. 
• Forum to discuss many advances in microelectronics and computing (AI/FastML, heterogeneous computing, storage, 

networking, etc.).   
Streaming Readout X, co-organized with EPIC DAQ and electronics WG: 
• Review the progress on streaming readout electronics, computing, and software. 
• Discuss the future priorities for the EIC Streaming Readout Consortium. 
• Mini town hall meeting on streaming readout technologies of the NP community. 
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2017 SR I (online)

2018 SR II (MIT) SR III (CNU)

2019 SR IV (Italy) SR V (BNL)

2020 SR VI (JLab) SR VII (BNL)

2021 SR XIII (MIT) SR IX (ORNL)

2022 SR X (JLab)

https://indico.jlab.org/event/519/


Questions from Streaming Readout X
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Ongoing work in the EPIC DAQ and Electronics WG
• Is there any need for R&D? 
• Can we build a simple test setup? How will we scale it up? Can we use it for test beam? 
• We have to define the clock distribution. How will it be done? 

• Timing system needs to allow for simultaneous test of the detector components. 
• How is the stream aggregation done? 
• How are we building events? Do we need to build events online? 
• Generalize electrical - optical interface 
• What protocols are used for the DAQ? 
• Hardware and software (data handling, communication; calibrations, reconstruction, analysis) 
• Interface of streaming readout and experimental control, including slow control, and also accelerator control.

• We need data quality monitoring for each layer of the read out and data processing, including feedback for 
accelerator control.  

• How will we handle firmware and software updates? 
• How do we coordinate the purchase of front-end electronics? 
• How do we coordinate the purchase of other components, e.g., GPUs? 



Questions from Streaming Readout X

Common Discussion of EPIC Computing and Software and DAQ and Electronics WGs on

Seamless Data Processing from DAQ to Analysis Using Streaming Readout and AI/ML: 

• What are the boundaries between DAQ, online and offline data processing? Will this be fully integrated? 

• What are the computing resources needed for the streaming readout? 
• What are the available and affordable resources? 

• For each detector component: 
• How will we handle calibrations? 
• Do we need a triggered system for calibrations? 
• What are the requirements for calibrations? 
• What would be the required turnaround time for calibrations? 

• For the integrated detector: 
• How do we align the central and for-forward regions? 

• How can we manage background and noise reliably? 

• What are the biases in the design and implementation of streaming readout and AI/ML and how to prevent them?
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For all these questions: We need simulations of the entire data stream. We are ready to implement digitization 
based on the streaming readout. Then we can start with algorithm development. 



Summary
Markus Diefenthaler
mdiefent@jlab.org

We are working to accelerate science:

• Goal Analysis-ready data from the DAQ system. 

• Solution Seamless data processing from DAQ to analysis 
using streaming readout and AI/ML in near real-time. 

• We have the advances in scientific computing, we now 
need to organize and to collaborate to take full advantage 
of these advances. 

• How will the EPIC Computing and Software and DAQ and 
Electronics WGs work together? 

Many opportunities for autonomous control and 
experimentation. 


