Barrel ECAL requirements for inclusive analyses

Barak Schmookler

Importance of barrel ECAL

➢In the barrel region, reconstruction of the scattered electron kinematic will rely on the tracking detector.

Importance of barrel ECAL

- In the barrel region, reconstruction of the scattered electron kinematic will rely on the tracking detector.
- ➢ For inclusive analyses, therefore, the primary role of the barrel ECAL will be the rejection of the negative pion background which originates largely from the low Q² part of the ep/A cross section.

Importance of barrel ECAL

- In the barrel region, reconstruction of the scattered electron kinematic will rely on the tracking detector.
- ➢ For inclusive analyses, therefore, the primary role of the barrel ECAL will be the rejection of the negative pion background which originates largely from the low Q² part of the ep/A cross section.
- Secondary considerations are contributions to determination of total (and hadronic) E-p_z; and potential to distinguish any produced FSR photon from scattered electron.

Angle between radiated photon and scattered electron

Impact of pion contamination on inclusive measurements

Unpolarized cross section

$$\left(\frac{\Delta\left(\sigma^{r,NC}\right)}{\sigma^{r,NC}}\right)_{\pi^{-}} = \Delta f_{\pi/e} \approx 0.1 f_{\pi/e}$$

Sensitivity to F_L at high y:

$$\sigma^{r,NC} = F_2 - \frac{y^2}{1 + (1-y)^2} F_L$$

Inclusive asymmetry measurements

If contamination is small, can be treated as a dilution factor. Otherwise correct as:

$$A^{e} = \frac{1}{1 - f_{\pi/e}} \left(A^{e}_{meas.} - f_{\pi/e} A^{\pi} \right)$$

In either case, uncertainty is given as:

$$\left(\frac{\sigma_{A^e}}{A^e}\right)_{\pi^-} = \sqrt{(\Delta f_{\pi/e})^2 + \left(f_{\pi/e}\frac{|A^{\pi}| + \Delta A^{\pi}}{A^e}\right)^2}$$
$$\approx 0.1 \times f_{\pi/e} - 1 \times \bar{f}_{\pi/e}$$

Unpolarized cross section requirement

- Statistical uncertainties for the unpolarized cross section will be small. Measurement will be systematics dominated.
- Pion contamination is generally treated as an uncorrelated (pointto-point) systematic uncertainty.
- A 90% scattered electron purity is needed to keep this uncertainty to the 1% level.

$$\frac{\Delta \left(\sigma^{r,NC}\right)_{stat.}}{\sigma^{r,NC}} = \frac{1}{\sqrt{N}}$$

Double-spin inclusive asymmetry requirement

- For asymmetry measurement, (fractional) statistical uncertainty can be large at smaller x and Q².
- In the barrel region, however, the statistical uncertainty can be below 1%. The asymmetry is also expected to be larger in this region.
- So, to keep the systematic uncertainty associated with the pion contamination to 1%, a 90% scattered electron purity is again needed.
- Better purity would allow the contamination to be treated as a dilution factor.

1/11/2023

Raw negative pion to scattered electron ratios

- Plots to the right show the raw contamination as a function of momentum for different angular ranges. Most minimum bias events will not have a scattered electron in the main detector.
- The vertical orange line shows the minimum momentum satisfying a Q² > 1 GeV² and y < 0.95 cut on the electron candidate.
- As can be seen, the raw pion to electron ratio can approach 10⁴ in the barrel region.

Pion rejection requirements

- To achieve the 90% final electron purity discussed above, a pion suppression up to 10⁵ is needed above the minimum momentum threshold.
- Including imperfect electron efficiency would adjust this slightly.

How to achieve high scattered electron purity

- There are several methods to suppress the raw backgrounds for the scattered electron.
 - 1. EMCal and PID detector responses for each electron candidate.
 - 2. Event-level requirement on the total measured E-p_z.
 - 3. Isolation cuts on electron candidates.
 - 4. Veto on far-backwards electron tagger.
 - 5. Reconstruction of positron spectrum to subtract decay/dalitz electrons.

How to achieve high scattered electron purity

- There are several methods to suppress the raw backgrounds for the scattered electron.
 - 1. EMCal and PID detector responses for each electron candidate.
 - 2. Event-level requirement on the total measured $E-p_z$.
 - 3. Isolation cuts on electron candidates.
 - 4. Veto on far-backwards electron tagger.
 - 5. Reconstruction of positron spectrum to subtract decay/dalitz electrons.

\succ In the detector proposals,

parameterized approaches were taken to estimate the final scattered electron purity. These suggested >90% purity could be achieved.

- We need to repeat this work using the full ePIC simulation.
- This requires developing an electron finder that works on minimum bias data not only for signal events.
- First steps have been taken. See Tyler's talk.

Example: sensitivity to total E-p, determination

- Plots to the right show the rejection factor after applying certain cuts on total E-p_z. The sum is over generated particles within the main detector acceptance.
- The effect of this cut is more pronounced at lower momentum, as expected.
- This shows that the final requirement on the detector performance will depend on the total E-p_z resolution of the detector.

Conclusions

- Large pion contamination in the barrel is a challenge for high y electron identification.
- Pion rejection will require both detector-level and kinematic-level cuts.
- ➤This makes it difficult to provide specific requirements on the barrel ECAL without full minimum-bias simulations. But a parameterized approach can be taken in the short term, as was done in the proposals.
- Some progress has been made towards developing an electron finder.

BACKUP

Raw backgrounds

1/11/2023

Proposal studies – Electron purity

Studies done using raw pion-toelectron ratios and applying parameterizations of calorimeter and PID detector responses.

Fast simulation for reconstruction of total E-p_z

11					1
η range	Tracker	EmCal	HCal		
	$\sigma_p/p[\%]$	$\sigma_E/E[\%]$	$\sigma_E/E~[\%]$	$\sigma_{\theta} [\text{Rad}]$	σ_{ϕ} [Rad]
-4.02.0	$0.1 \cdot p \bigoplus 0.5$	$2/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
-2.01.0	$0.05 \cdot p \bigoplus 0.5$	$7/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
-1.0 - +1.0	$0.05 \cdot p \bigoplus 0.5$	$12/\sqrt{E} \bigoplus 1.0$	$85/\sqrt{E} \bigoplus 7.0$	$0.01/\left(p\cdot\sqrt{\sin heta} ight)$	0.01
+1.0 - +2.5	$0.05 \cdot p \bigoplus 1.0$	$12/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
+2.5 - +4.0	$0.1 \cdot p \bigoplus 2.0$	$12/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		

Charged particles Photons Neutral hadrons General comments:

- 1. Parameterization based on Yellow Report detector matrix, with minor changes.
- 2. We only study events where the scattered electron is reconstructed.
- 3. We use the tracker to reconstruct the momentum (energy) of the scattered electron for this study.
- 4. When the radiated photon is within the detector acceptance, we assume it is separated from the scattered electron and can be treated as any other photon.
- 5. For all particles, we use a minimum P_t acceptance of $P_t > 0.25$ GeV/c.

Fast simulation for reconstruction of total E-p_z

Charged particles Photons Neutral hadrons We studied three different detector settings within the above detector configuration:

- 1. Perfect PID for all reconstructed particles.
- 2. No hadronic PID: for charged particles other than electrons and positrons, reconstruct particle using charged pion mass; for neutral hadrons, reconstruct using zero mass.
- 3. No hadronic PID and no backwards HCal: same as setting 2, with HCal from -4 < eta < -1 removed.

Reconstruction results – all

No QED effects included

QED effects turned ON

Where in the detector does most of the total E-p_z go?

Sum over final-state particles

Distribution of the total $E-p_z$ in the detector depends strongly on the scattered electron kinematics.

Hadronic final-state (HFS) distribution and total E-p₇

- The HFS will carry a total $E-p_z$ approximately equal to the inelasticity times twice the electron beam energy $(2yE_e)$.
- ➤The HFS will go into the hadron endcap at lower values of y – this is, when is carries a small amount of the total E-p_z. The exception may be at very high x and Q² for the high beam energy setting.

