Nuclear matter in all these states

C-J. Naïm

Center for Frontiers in Nuclear Science

QCD meeting

CFNS

At large momentum transfer in pp, scale $Q \gg \Lambda_{QCD} \approx 200$ MeV

$$pp \rightarrow \gamma^{\star}/Z^{0} \rightarrow \ell^{+}\ell^{-} + X \text{ (Drell-Yan)}$$

Factorization of cross section = approximation

$$\frac{\mathrm{d}\sigma_{\mathrm{pp}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_1 f_i^{\mathsf{p}}\left(x_1,\mu\right) \int \mathrm{d}x_2 f_j^{\mathsf{p}}\left(x_2,\mu\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_1,x_2,\mu'\right)}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{p}}^n}{Q^n}\right)$$

- $\hat{\sigma}_{ij}$: partonic cross section calculable in perturbation theory
- $\bullet \ x_1, \, x_2$: fraction of momentum carried by the parton in proton
- $f_{i,j}$: Parton Distribution Function (PDF), *universal* non perturbative

Proton-nucleus collisions

Cross section in pA collisions assuming collinear factorization

$$\frac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_1 f_i^{\mathsf{p}}\left(x_1,\mu\right) \int \mathrm{d}x_2 f_j^{\mathsf{A}}\left(x_2,\mu\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_1,x_2,\mu'\right)}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{A}}^{n}}{Q^{n}}\right)$$

• Probing the PDF of a nucleus (without nuclear effects)

$$f_i^{A} = Z f_i^{p} + (A - Z) f_i^{n}$$

 $\sigma_{pA} = Z \sigma_{pp} + (A - Z) \sigma_{pn} \approx A \sigma_{pp}$

Investigate nuclear effects via:

$$R_{\rm pA} \equiv \frac{1}{A} \frac{{\rm d}\sigma_{\rm pA}}{{\rm d}\sigma_{\rm pp}} \approx 1$$

sPHENIX experiment

A transitional experiment...

2017 - 2022

After 2025

Time

Drell-Yan at sPHENIX

- Forward trackings \rightarrow access to small-x;
- Probe $x \sim 10^{-2}$ to 10^{-3} ;
- Complementary measurements from fixed targets to LHC.

Luminosity expected at sPHENIX

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z <10 cm	z <10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	p^{\uparrow} +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	$0.11 \ {\rm pb}^{-1}$
					$0.01 \text{ pb}^{-1} [10\%-str]$	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

• 2024 (p+p p+Au):

Commissioning and p+p reference data and p+Au cold QCD;

• 2025 (Au+Au):

Large statistics data collection for jets and heavy flavor observables.

DY at NLO - $\sqrt{s} = 200$ GeV - pp collisions

- At NLO: $q\bar{q} \rightarrow \gamma^*$ and $qg \rightarrow \gamma^*q + X$;
- qg contribution becomes significant at $p_\perp \sim 4$ GeV;
- $\bullet\,\sim\,80$ % of qg contribution for 4 $\lesssim\,p_{\perp}\,\lesssim\,15$ GeV.

nPDF (EPPS16)

•
$$\sigma^{\mathsf{DY}} \propto \left(u^{\mathsf{p}} \bar{u}^{\mathsf{A}} + u^{\mathsf{A}} \bar{u}^{\mathsf{p}} \right)$$
 for $\mathsf{p}_{\perp} < \mathsf{M};$

• $\sigma^{\mathsf{DY}} \propto \left(q^{\mathsf{p}}g^{\mathsf{A}} + q^{\mathsf{A}}g^{\mathsf{p}}\right)$ for $4 \lesssim \mathsf{p}_{\perp} \lesssim 15$ GeV;

• Huge uncertainties, especially in EMC/shadowing regions;

• Reduce others nPDF uncertainties thanks to DGLAP evolution.

Transport properties of cold nuclear matter

Definition

$$\hat{q} \equiv rac{\mu^2}{\lambda} = rac{d\Delta p_{\perp}^2}{dL}$$

- λ is the parton mean free path in the medium;
- μ the typical momentum transferred during 1 soft collision;
- Δp_{\perp}^2 the transverse momentum exchanged between the propating parton and the medium.

Drell-Yan: a clean probe of the saturation scale I

[Arleo, Naïm, JHEP07(2020)220]

 p_{\perp} spectra: an observable to probe transport properties

$$\Delta p_{\perp}^2 = \left\langle p_{\perp}^2 \right\rangle_{\mathrm{hA}} - \left\langle p_{\perp}^2 \right\rangle_{\mathrm{hp}} = rac{\mathcal{C}_{\mathcal{R}} + \mathcal{C}_{\mathcal{R}'}}{2N_c} \left(\hat{q}_{\mathrm{A}} L_{\mathrm{A}} - \hat{q}_{\mathrm{p}} L_{\mathrm{p}}
ight)$$

Low energy picture when $t_{hard} \leq L$:

• Drell-Yan: $C_q + 0 = 4/3$;

• Quarkonia (octet) in pA: $C_g + C_{[Q\bar{Q}]_8} = 3 + 3$.

Drell-Yan: a clean of probe the saturation scale II

• Simple model used at high energy $\hat{q}(x) \propto \hat{q}_0 \times x^{-0.25}$;

• Extraction of $\hat{q}_0 = 0.051 \pm 0.02 \text{ GeV}^2/\text{fm}.$

Extraction of the transport coefficient

• New (strong?) constraint from Drell-Yan data at sPHENIX.

Drell-Yan at PHENIX experiment - $\sqrt{s} = 200$ GeV

- Probe the coherence lenght between low and high energy picture;
- Need to have better statistics to conclude.

Drell-Yan analysis at sPHENIX

Processes:

- Charmonium $(J/\psi, \psi')$
- Bottomonium (Υ)
- Open-Charm (D mesons)
- Bottom (B mesons)
- Drell-Yan

Procedure:

- **Simulate all QCD processes** in sPHENIX softwares and identify the contribution of each other in HMDY region;
- Fit the mass spectrum with the following function:

 $\mathsf{f}(\mathsf{M})_{\mathrm{fit}} = \alpha_1 f(\mathsf{M})_{\mathrm{MC}}^{\mathsf{Charmonium}} + \alpha_2 f(\mathsf{M})_{\mathrm{MC}}^{\mathsf{DY}} + \alpha_3 f(\mathsf{M})_{\mathrm{MC}}^{\mathrm{OC}} + \alpha_4 f(\mathsf{M})_{\mathrm{MC}}^{\mathrm{Bottom}} + \alpha_5 f(\mathsf{M})_{\mathrm{MC}}^{\mathsf{Bottomium}}$

Simulation by using sPHENIX software

• Very close shape from DY, Bottomium and OC contributions;

- Bottom is **less steeper** compared to OC, especially at $M \gtrsim 4$ GeV;
- Tail from charmonium/bottomium at low mass: QED radiation. CFNS

QCD meeting

Invariant mass reconstruction

• Improve the stat. (according to sPHENIX luminosity): in progress;

• Not enough data to constrain large mass, cross section low;

•
$$\sigma_{\rm OC} > \sigma_{\rm Bottom} > \sigma_{\rm DY}$$
 at M \sim 2 GeV.

Drell-Yan - Kinematic phase space

Internal jet structure

- Access the dynamics of hadronization;
- Charge-energy correlation for Leading and Next-to-Leading particles.

Observable:

$$r_{c}(X) = \frac{\mathrm{d}\sigma_{h_{1}h_{2}}/\mathrm{d}X - \mathrm{d}\sigma_{h_{1}\overline{h_{2}}}/\mathrm{d}X}{\mathrm{d}\sigma_{h_{1}h_{2}}/\mathrm{d}X + \mathrm{d}\sigma_{h_{1}\overline{h_{2}}}/\mathrm{d}X}$$

where h1,h2 \in (π^{\pm}, K^{\pm}, p)

• Significant differences in r_c observed for various flavor combinations.

Drell-Yan at sPHENIX

- Background extraction depends on the mastery of Open-Charm and Open-Bottom contributions;
- Clean process to study cold nuclear matter effects (gluon nPDF, boadening, saturations scale).

Not only DY ... use the mass spectrum fit to study the Upsilon suppression (mass dependance of energy loss).

Internal jet structure at sPHENIX

- Significant differences in r_c observed for various flavor combinations;
- Possible to check the formation time calculation;
- Essential to have a good PID for the flavor-tagged measurements (EIC).