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History of Quantum Computation

“I’m not happy with all the analyses that go with just the classical
theory, because nature isn’t classical. If you want to make a
simulation of nature you’d better make it quantum mechanical”

Feynman 1981 at 1st Symposium on Physics and Computation

Shor 1994
Discovery of exponentially fast algorithm solving prime factorisation 

The First Revolution of Quantum Computation

The vulnerability of RSA & elliptic curve cryptography



Superconducting Quantum Computer

Nakamura et al, Nature 1999

The first construction of a qubit

Chow et al, PRL  2012

IBM Watson Research Center

Gate fidelity 95% for Universal Quantum
Gate Set for two quits

Google (Martinis group), Nature 2019

Quantum supremacy using a programable 
superconducting processor 



3 Approaches to Quantum Computation
Quantum Annealing

・5000 qubits are implemented by D-wave

Kadowaki & Nishimori, PRE 1998 

・No known way for error correction

Kitaev’s Toric code, Annals of Physics 1997

Topological Fault-Tolerant Quantum Computer

・Quantum supremacy is possible

・Requires 1000000000 qubits for practical use Google, IBM, ect…

Topological Quantum Computer with Anyons

Microsoft

・Protects quantum information topologically on real hardware

・Need and control non-abelian anyons



Quantum Information Processing & Communication

Kimble “Quantum Internet” Nature 2008

Nature 590, 540-541 (2021)

Delivery of remote entanglement on a 
quantum network

Connecting quantum computers in a network

UT Delft group, Nature 2018

HP of TU Delft https://www.tudelft.nl/en/2019/tu-delft/kpn-and-qutech-join-forces-to-make-quantum-internet-a-reality



Basics of Quantum 
Computation



Basics of Quantum Computation

|ψ⟩ = α |0⟩ + β |1⟩ |α |2 + |β |2 = 1, α, β ∈ ℂ
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How to Implement Your Problem 

1. Discretize your problem

2. Construct a gate set

U
U1

U4

U3

U2

U5

Your Problem Your Program≃



I = (1 0
0 1), X = (0 1

1 0), Y = (0 −i
i 0 ), Z = (1 0

0 −1)
Pauli operators

|0⟩ = (1
0), |1⟩ = (0

1)X |0⟩ = |1⟩, X |1⟩ = |0⟩

Pauli X flips a qubit

CNOT operator 
Λ(X) = |0⟩⟨0 | ⊗ I + |1⟩⟨1 | ⊗ X

|1⟩ ⊗ |0⟩ ↦ |1⟩ ⊗ |1⟩, |1⟩ ⊗ |1⟩ ↦ |1⟩ ⊗ |0⟩

Theorem (Dawson-Nielsen 2006)

Paulis and CNOT are enough for universal computation

Universal Quantum Computation



Application to QFT



How to Implement Your Problem 
1. Discretize your problem

2. Write a spin Hamiltonian

U1

U4

U3

U2

U5

Your Problem Your Program≃

e− ∫t
0 H(t)dt

Δt Δt Δt

Hspin =
N

∑
i=1

hX
i Xi + hY

i Yi + hZ
i Zi + ∑

i, j

JXX
ij XiXj + JXY

ij XiYj + JXZ
ij XiZj + ⋯



Quantum Computation for QED

with Dmitri Kharzeev & Yuta Kikuchi

“Real-time Dynamics of Chern-Simons Fluctuations near a critical point”, PRD (2021)

Work in progress with Frenklakh, Kharzeev, Korepin, Shi (Stony Brook) & Florio, Yu (BNL)

arXiv: 2211.XXXX (2022)



Quantum Electric Dynamics in 1+1 d

Similarities to QCD in 3+1 d

・Confinement 

・Chiral symmetry breaking 

・CP violation 

・Vacuum decay by external magnetic field (Schwinger effect)

Dirac fermionField strength (Gauge boson)



Construction of the Spin Hamiltonian 

1. Derive the Hamiltonian on Lattice  

2. Use Jordan-Winger Transformation 

Schwinger Model = QED in 1+1 d

(we put θ=0 in this talk)

Suzuki-Trotter decomposition

Quantum  
circuits



Schwinger model on lattice (staggers fermion)

Jordan-Wigner transformation

Spin representation of Schwinger model

Electric field op satisfying the Gauss law



Kokai et al Nature (2019)

Ground state phase transition of the Schwinger model

θ

Coleman (1976) noticed that there is the 2nd order critical point,  
belonging to the universality class of the 1+1d transverse Ising model.
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Beyond Qubits



Beyond Qubits

“I’m not happy with all the analyses that go with just the classical
theory, because nature isn’t classical. If you want to make a
simulation of nature you’d better make it quantum mechanical”

Feynman 1981 at 1st Symposium on Physics and Computation

Can we perform Feynman path integral  
with a quantum computer? 

Maybe NO, in general



How to Implement Your Problem 

1. Discretize your problem

2. Write a spin Hamiltonian

Extremely non-trivial unless it is a discrete problem

Even if it is discrete, not easy to solve (cf: Monte Carlo)

Inefficient for bosons 



How to create a model of quantum 
computation stranger than BQP?
Freedman, Kitaev, Wan (2002) 

TQFT is not stronger than BQP

What about using  
- String Theory ? 
- AQFT ? naive motivation



What could be a general mathematical framework 
that addresses any quantum theory?

X : Topological Spacesℱ&

π : ℱ → X : Continuous map s.t.

π−1(U) is a set of quantum states for each open U of X. 

U

π

π−1(U)

X



U

π

π−1(U)

How to define operation on ?(ℱ, π, X)

B(ℋU) : the set of all bounded operators on U

𝒜 ⊂ B(ℋU) : a von Neumann algebra on U

D(ℋU) ∋ ρ ↦ aρa† ∈ D(ℋU), a ∈ 𝒜𝒜

X

D(ℋU) : the set of all density operators on U

Operation of 𝒜



Comparison with Quantum Computation
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Comparison with Quantum Computation

Open sets of inputs

O1 O2

π−1(O1) π−1(O2)

a ∈ 𝒜O1
⊗ 𝒜O2

X

- String Theory ? 
- AQFT ?

Perfectly applicable!!

Applicable to bounded parts



Summary and Outlook
Quantum information communication has established 
advantages over classical communication.

For discretizable problems, quantum computation may work well.

To successfully handle general problems, quantum computation 
should be generalized. (I gave a general formulation)

Homework for People 100 Years Ahead:

Implement von Neumann algebras on a space of exponential memory.

1943 2020 2120

?


