High Energy Physics

with D. Kharzeev \& Y. Kikuchi, PRD (2021)

Quantum Computation

with Y. Nakamura, T. Humble, Sci Rep (2019)
ロ::WอVe

Qectina Started with D. Were Savers
UahoLesp's Hybrid Sovers
Solver Fropstes and Parameters
Problem-Solving Handboak

Solver Docs Leap Does Release Notes Legal Ocesn Docsce

Papers

- [.|ke2018] describes an implementation of rurge scheduling.

Collected in the user handbook of a quantum computer company

Condensed Matter

with Y. Matsuki \& M. Koshino, PRB (2021)

Mathematical Physics
Ann. Phys (2018) \& J. Math. Phys (2018)

Hofstadter's butterfly confirms a new tie between physics and mathematics

Outline

1. Introduction to Quantum Computation
2. Quantum Computation for High Energy Physics

KI, Dmitri Kharzeev (Stony Brook, BNL) \& Yuta Kikuchi (BNL), Phys. Rev. D 103 (2021) KI and 6 other authors at Stony Brook \& BNL, to appear (2022)
3. Beyond qubits: Operator Algebra

KI, arXiv: 2210. 05133 [math.OA] (2022)
4. Summary and Outlook

History of Quantum Computation

Feynman 1981 at 1st Symposium on Physics and Computation
"I'm not happy with all the analyses that go with just the classical theory, because nature isn't classical. If you want to make a simulation of nature you'd better make it quantum mechanical"

Shor 1994
Discovery of exponentially fast algorithm solving prime factorisation The vulnerability of RSA \& elliptic curve cryptography The First Revolution of Quantum Computation

Superconducting Quantum Computer

Nakamura et al, Nature 1999
The first construction of a qubit

Figure 1 Single-Coooar-pair cox with a probe junction. a. Nicragrach of the

IBM Watson Research Center
Gate fidelity 95\% for Universal Quantum Gate Set for two quits

Chow et al, PRL 2012

Google (Martinis group), Nature 2019
Quantum supremacy using a programable superconducting processor

3 Approaches to Quantum Computation

Quantum Annealing

Kadowaki \& Nishimori, PRE 1998

- 5000 qubits are implemented by D-wave
- No known way for error correction

Topological Fault-Tolerant Quantum Computer

Kitaev’s Toric code, Annals of Physics 1997

- Quantum supremacy is possible
- Requires 1000000000 qubits for practical use Google, IBM, ect...

Topological Quantum Computer with Anyons

- Protects quantum information topologically on real hardware
- Need and control non-abelian anyons

Quantum Information Processing \& Communication

Kimble "Quantum Internet" Nature 2008

Connecting quantum computers in a network

UT Delft group, Nature 2018

Delivery of remote entanglement on a quantum network

QUANTUM NETWORK

Physicists have created a network that links three quanturn devices using the phenornenon of entanglernent. Each device holds one qubit of quantum information and can be entangled with the other two. Such a network could be the basis of a future quantum internet.

Nature 590, 540-541 (2021)

Basics of Quantum Computation

Basics of Quantum Computation

Qubit

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \quad|\alpha|^{2}+|\beta|^{2}=1, \alpha, \beta \in \mathbb{C}
$$

Input \longrightarrow Unitary evolution \longrightarrow Output

How to Implement Your Problem

1. Discretize your problem

2. Construct a gate set

Universal Quantum Computation

Pauli operators

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Pauli X flips a qubit

$$
X|0\rangle=|1\rangle, X|1\rangle=|0\rangle \quad|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}
$$

CNOT operator

$$
\begin{gathered}
\Lambda(X)=|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes X \\
|1\rangle \otimes|0\rangle \mapsto|1\rangle \otimes|1\rangle,|1\rangle \otimes|1\rangle \mapsto|1\rangle \otimes|0\rangle
\end{gathered}
$$

Theorem (Dawson-Nielsen 2006)
Paulis and CNOT are enough for universal computation

Application to QFT

How to Implement Your Problem

1. Discretize your problem

2. Write a spin Hamiltonian

$$
H_{s p i n}=\sum_{i=1}^{N} h_{i}^{X} X_{i}+h_{i}^{Y} Y_{i}+h_{i}^{Z} Z_{i}+\sum_{i, j} J_{i j}^{X X} X_{i} X_{j}+J_{i j}^{X Y} X_{i} Y_{j}+J_{i j}^{X Z} X_{i} Z_{j}+\cdots
$$

Your Program

Quantum Computation for QED

"Real-time Dynamics of Chern-Simons Fluctuations near a critical point", PRD (2021) with Dmitri Kharzeev \& Yuta Kikuchi


```
Lloter Domenceas
Real-time dynamics of Chern-Simons fluctuations near a critical point
Kazuki Ikeda, Dmitri E. Kharzeev, and Yuta Kikuchi
Fhys. Rev. D 103, L071502 - Published 21 April 2021
```


Work in progress with Frenklakh, Kharzeev, Korepin, Shi (Stony Brook) \& Florio, Yu (BNL) arXiv: 2211.XXXX (2022)

Quantum Electric Dynamics in $1+1$ d

$$
S=\int \mathrm{d}^{2} x\left[-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{g \theta}{4 \pi}{ }^{\epsilon^{\mu \nu}} F_{\mu \nu}+\bar{\psi}(\mathrm{i} \not D \mathcal{D}-m) \psi\right]
$$

Field strength (Gauge boson)
Dirac fermion

Similarities to QCD in $3+1$ d

- Confinement
- Chiral symmetry breaking
- CP violation
- Vacuum decay by external magnetic field (Schwinger effect)

Schwinger Model = QED in 1+1 d

$$
S=\int \mathrm{d}^{2} x\left[-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{g \theta}{4 \pi} \epsilon^{\mu \nu} F_{\mu \nu}+\bar{\psi}(\mathrm{i} \not \partial-m) \psi\right]
$$

(we put $\theta=0$ in this talk)

Construction of the Spin Hamiltonian

1. Derive the Hamiltonian on Lattice
2. Use Jordan-Winger Transformation
$\mathrm{e}^{-\mathrm{i} H \epsilon} \approx \mathrm{e}^{-\mathrm{i} H_{Z} \epsilon} \mathrm{e}^{-\mathrm{i} H_{X X} \epsilon} \mathrm{e}^{-\mathrm{i} H_{Y Y} \epsilon} \mathrm{e}^{-\mathrm{i} H_{Z Z} \epsilon}$
Suzuki-Trotter decomposition

Quantum circuits

Schwinger model on lattice (staggers fermion)

$$
H=\frac{a g^{2}}{2} \sum_{n=1}^{N-1}\left[\sum_{i=1}^{n}\left(\chi_{i}^{\dagger} \chi_{i}-\frac{1-(-1)^{i}}{2}\right)\right]^{2}-\frac{\mathrm{i}}{2 a} \sum_{n=1}^{N-1}\left[\chi_{n+1}^{\dagger} \chi_{n}-\chi_{n}^{\dagger} \chi_{n+1}\right]+m \sum_{n=1}^{N}(-1)^{n} \chi_{n}^{\dagger} \chi_{n}
$$

Electric field op satisfying the Gauss law $L_{n}=\sum_{i=1}^{n}\left(\chi_{i}^{\dagger} \chi_{i}-\frac{1-(-1)^{i}}{2}\right)$

Jordan-Wigner transformation

$$
\begin{aligned}
& \chi_{n}=\frac{X_{n}-\mathrm{i} Y_{n}}{2} \prod_{i=1}^{n-1}\left(-\mathrm{i} Z_{i}\right) \\
& \chi_{n}^{\dagger}=\frac{X_{n}+\mathrm{i} Y_{n}}{2} \prod_{i=1}^{n-1}\left(\mathrm{i} Z_{i}\right)
\end{aligned}
$$

Spin representation of Schwinger model

$$
H=\frac{1}{4 a} \sum_{n=1}^{N-1}\left(X_{n} X_{n+1}+Y_{n} Y_{n+1}\right)+\frac{m}{2} \sum_{n=1}^{N}(-1)^{n} Z_{n}+\frac{a g^{2}}{2} \sum_{n=1}^{N}\left(\sum_{i=1}^{n} \frac{Z_{i}+(-1)^{i}}{2}\right)^{2}
$$

$$
L_{n}=\sum_{i=1}^{n} \frac{Z_{i}+(-1)^{i}}{2}
$$

Ground state phase transition of the Schwinger model

Coleman (1976) noticed that there is the 2nd order critical point, belonging to the universality class of the 1+1d transverse Ising model.

Real-time Topological Susceptibility

$$
\frac{\chi_{C S}}{g^{2}}=\frac{N-1}{\pi^{2}} \operatorname{Re} \int_{0}^{\hat{T}} d \hat{t}(t)\left(\langle\bar{L}(t) \bar{L}(0)\rangle-\langle\bar{L}(0)\rangle^{2}\right) \quad \hat{t}:=\left(a g^{2} / 2\right) t, \hat{T}:=\left(a g^{2} / 2\right) T
$$

$$
\begin{aligned}
& \text { Scaling rule } \\
& \begin{array}{l}
m \sim m_{*} \\
\tilde{\chi}(m ; N) \approx N^{\gamma / \nu} Q(N / \xi): \\
Q(x) \approx A\left(\xi_{0} x\right)^{-\gamma / \nu} \\
\gamma=\frac{7}{4} \quad \nu=1 .
\end{array}
\end{aligned}
$$

Beyond Qubits

Mathematics > Operator Algebras
(5ubmitted on 11 OCt 20273
Quantum Fibrations: quantum computation on an arbitrary topological space

Beyond Qubits

Feynman 1981 at 1st Symposium on Physics and Computation "I'm not happy with all the analyses that go with just the classical theory, because nature isn't classical. If you want to make a simulation of nature you'd better make it quantum mechanical"

Can we perform Feynman path integral with a quantum computer?

Maybe NO, in general

How to Implement Your Problem

1. Discretize your problem

Extremely non-trivial unless it is a discrete problem

Even if it is discrete, not easy to solve (cf: Monte Carlo)

2. Write a spin Hamiltonian

Inefficient for bosons

How to create a model of quantum computation stranger than BQP?

Freedman, Kitaev, Wan (2002)
TQFT is not stronger than BQP

What about using

- String Theory ?
- AQFT ?
naive motivation

What could be a general mathematical framework that addresses any quantum theory?

$X \& \mathscr{F} \quad:$ Topological Spaces
$\pi: \mathscr{F} \rightarrow X:$ Continuous map s.t.
$\pi^{-1}(U)$ is a set of quantum states for each open U of x.

How to define operation on (\mathscr{F}, π, X) ?

$B\left(\mathscr{H}_{U}\right)$: the set of all bounded operators on U
$\mathscr{A} \subset B\left(\mathscr{H}_{U}\right):$ a von Neumann algebra on U
$D\left(\mathscr{H}_{U}\right)$: the set of all density operators on U

Comparison with Quantum Computation

Discrete inputs on graph

Comparison with Quantum Computation

Applicable to bounded parts

Perfectly applicable!!

Summary and Outlook

Quantum information communication has established advantages over classical communication.

For discretizable problems, quantum computation may work well.
To successfully handle general problems, quantum computation should be generalized. (I gave a general formulation)

Homework for People 100 Years Ahead:
Implement von Neumann algebras on a space of exponential memory.

1943

2020

2120

