Exclusive production of di-leptons

Paweł Sznajder National Centre for Nuclear Research, Poland

EIC UG 2nd IP meeting, Stony Brook, US, December 7th, 2022 (online participation)

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

- Introduction
- TCS, DDVCS and diphoton production
- Tools
- Summary

Deeply Virtual Compton Scattering (DVCS)

factorisation for $|t|/Q^2 \ll 1$

Paweł Sznajder / Exclusive production of di-leptons / December 22, 2022

Chiral-even GPDs: (helicity of parton conserved)

$H^{q,g}(x,\xi,t)$	$E^{q,g}(x,\xi,t)$	for sum over parton helicitie
$\widetilde{H}^{q,g}(x,\xi,t)$	$\widetilde{E}^{q,g}(x,\xi,t)$	for difference parton helicitie
nucleon helicity conserved	nucleon helicity changed	

Nucleon tomography:

$$q(x, \mathbf{b}_{\perp}) = \int \frac{\mathrm{d}^2 \mathbf{\Delta}}{4\pi^2} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}} H^q(x, 0, t = -\mathbf{\Delta})$$

Energy momentum tensor in terms of form factors (OAM and mechanical forces):

$$\langle p', s' | \widehat{T}^{\mu\nu} | p, s \rangle = \overline{u}(p', s') \left[\frac{P^{\mu}P^{\nu}}{M} A(t) + \frac{\Delta}{M} \frac{P^{\mu}i\sigma^{\nu\lambda}\Delta_{\lambda}}{4M} \left[A(t) + B(t) + L \right] \right]$$

 $\mathbf{\Delta}^2$)

GPDs accessible in various production channels and observables \rightarrow experimental filters

DVCS Deeply Virtual Compton Scattering

TCS Timelike Compton Scattering

Paweł Sznajder / Exclusive production of di-leptons / December 22, 2022

HEMP Hard Exclusive Meson Production

more production channels sensitive to GPDs exist!

Cross-section: $d\sigma \propto |\mathcal{T}_{BH} + \mathcal{T}(M_{\lambda'\mu',\lambda\mu})|^2$

DVCS:

$$\begin{split} ^{S}M_{++++} &= \sqrt{1-\xi^{2}} \left[{}^{S}\mathscr{H} + {}^{S}\widetilde{\mathscr{H}} - \frac{\xi^{2}}{1-\xi^{2}} ({}^{S}\mathscr{E} + {}^{S}\widetilde{\mathscr{E}}) \right] \\ ^{S}M_{-+-+} &= \sqrt{1-\xi^{2}} \left[{}^{S}\mathscr{H} - {}^{S}\widetilde{\mathscr{H}} - \frac{\xi^{2}}{1-\xi^{2}} ({}^{S}\mathscr{E} - {}^{S}\widetilde{\mathscr{E}}) \right] \\ ^{S}M_{++-+} &= \frac{\sqrt{t_{0}-t}}{2M} \left[{}^{S}\mathscr{E} - \xi^{S}\widetilde{\mathscr{E}} \right] \\ ^{S}M_{-+++} &= -\frac{\sqrt{t_{0}-t}}{2M} \left[{}^{S}\mathscr{E} + \xi^{S}\widetilde{\mathscr{E}} \right] \end{split}$$

for more details see: Berger, Diehl, Pire Eur. Phys. J. C23 675, 2002

(S)pace-like or (T)ime-like

Helicity amplitudes:

Helicities (p' γ ',p γ), where $\gamma p \rightarrow \gamma' p'$

Compton Form Factors:

 $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$

TCS:

$${}^{T}M_{+-+-} = \sqrt{1-\xi^{2}} \left[{}^{T}\mathscr{H} + {}^{T}\widetilde{\mathscr{H}} - \frac{\xi^{2}}{1-\xi^{2}} ({}^{T}\mathscr{E} + {}^{T}\widetilde{\mathscr{E}}) \right]$$

$${}^{T}M_{----} = \sqrt{1-\xi^{2}} \left[{}^{T}\mathscr{H} - {}^{T}\widetilde{\mathscr{H}} - \frac{\xi^{2}}{1-\xi^{2}} ({}^{T}\mathscr{E} - {}^{T}\widetilde{\mathscr{E}}) \right]$$

$${}^{T}M_{+---} = \frac{\sqrt{t_{0}-t}}{2M} \left[{}^{T}\mathscr{E} - \xi^{T}\widetilde{\mathscr{E}} \right]$$

$${}^{T}M_{--+-} = -\frac{\sqrt{t_{0}-t}}{2M} \left[{}^{T}\mathscr{E} + \xi^{T}\widetilde{\mathscr{E}} \right]$$

TCS

Compton Form Factors in terms of GPDs:

$$\mathscr{F}(\boldsymbol{\xi},t,\mathscr{Q}^2) = \int_{-1}^{1} dx \sum_{i=u,d,\ldots,g} T^i(x,\boldsymbol{\xi},\mathscr{Q}^2) F^i(x,\boldsymbol{\xi},t)$$

Coefficient functions:

DVCS:

$${}^{S}T^{i} \stackrel{\text{LO}}{=} {}^{S}C_{0}^{i}$$
$${}^{S}T^{i} \stackrel{\text{NLO}}{=} {}^{S}C_{0}^{i} + \frac{\alpha_{s}(\mu_{R}^{2})}{2\pi} \left[{}^{S}\pi^{i} \right]$$

Relation between DVCS and TCS CFFs:

 ${}^{T}\mathscr{H} \stackrel{\mathrm{LO}}{=} {}^{S}\mathscr{H}^{*}$ ${}^{T}\widetilde{\mathscr{H}} \stackrel{\mathrm{LO}}{=} -{}^{S}\widetilde{\mathscr{H}}^{*}$ ${}^{T}\mathscr{H} \stackrel{\mathrm{NLO}}{=} {}^{S}\mathscr{H}^{*} - i\pi \mathscr{Q}^{2} \frac{\partial}{\partial \mathscr{Q}^{2}} {}^{S}\mathscr{H}^{*}$ ${}^{T}\widetilde{\mathscr{H}} \stackrel{\mathrm{NLO}}{=} -{}^{S}\widetilde{\mathscr{H}}^{*} + i\pi \mathscr{Q}^{2} \frac{\partial}{\partial \mathscr{Q}^{2}} {}^{S}\widetilde{\mathscr{H}}^{*}$

for more details see: Mueller, Pire, Szymanowski, Wagner Phys. Rev. D86, 031502 (2012)

TCS:

 $^{T}T^{i} \stackrel{\text{LO}}{=} \pm^{S}T^{i*}$ $^{T}T^{i} \stackrel{\text{NLO}}{=} \pm^{S}T^{i*} \mp i\pi \frac{\alpha_{s}(\mu_{R}^{2})}{2\pi} ^{S}C_{\text{coll}}^{i*}$

 ${}^{S}C_{1}^{i} + {}^{S}C_{\text{coll}}^{i}\ln\frac{\mathscr{Q}^{2}}{\mu_{r}^{2}}$

TCS

Compton Form Factors in terms of GPDs:

$$\mathscr{F}(\boldsymbol{\xi},t,\mathscr{Q}^2) = \int_{-1}^{1} dx \sum_{i=u,d,\ldots,g} T^i(x,\boldsymbol{\xi},\mathscr{Q}^2) F^i(x,\boldsymbol{\xi},t)$$

Coefficient functions:

DVCS:

$${}^{S}T^{i} \stackrel{\text{LO}}{=} {}^{S}C_{0}^{i}$$
$${}^{S}T^{i} \stackrel{\text{NLO}}{=} {}^{S}C_{0}^{i} + \frac{\alpha_{s}(\mu_{R}^{2})}{2\pi} \left[{}^{S}C_{1}^{i} + {}^{S}C_{\text{coll}}^{i} \ln \frac{\mathscr{Q}^{2}}{\mu_{F}^{2}} \right]$$

Relation between DVCS and TCS CFFs:

 ${}^{T}\mathscr{H} \stackrel{\mathrm{LO}}{=} {}^{S}\mathscr{H}^{*}$ ${}^{T}\widetilde{\mathscr{H}} \stackrel{\mathrm{LO}}{=} -{}^{S}\widetilde{\mathscr{H}}^{*}$ ${}^{T}\mathscr{H} \stackrel{\mathrm{NLO}}{=} {}^{S}\mathscr{H}^{*} - i\pi \mathscr{Q}^{2} \frac{\partial}{\partial \mathscr{Q}^{2}} {}^{S}\mathscr{H}^{*}$ ${}^{T}\widetilde{\mathscr{H}} \stackrel{\mathrm{NLO}}{=} -{}^{S}\widetilde{\mathscr{H}}^{*} + i\pi \mathscr{Q}^{2} \frac{\partial}{\partial \mathscr{Q}^{2}} {}^{S}\widetilde{\mathscr{H}}^{*}.$

for more details see: Mueller, Pire, Szymanowski, Wagner Phys. Rev. D86, 031502 (2012)

TCS:

$${}^{T}T^{i} \stackrel{\text{LO}}{=} \pm {}^{S}T^{i*}$$
$${}^{T}T^{i} \stackrel{\text{NLO}}{=} \pm {}^{S}T^{i*} \mp i\pi \frac{\alpha_{s}(\mu_{R}^{2})}{2\pi} {}^{S}C_{\text{coll}}^{i*}$$

Combined study of DVCS and TCS:

- source of GPD information
- useful to prove universality of GPDs
- impact of NLO corrections
- constrain Q2-dep. of CFFs

Non-parametric Ansatz of CFFs

Features of analysis:

• Replica method for propagation of experimental uncertainties

H. Moutarde, PS, J. Wagner, Eur. Phys. J. C 79 (2019) 7, 614

- Independent artificial neural network for each
- CFF and Re/Im parts
- Functions of x_B , Q^2 and t
- Network size determined using benchmark sample
- No power-behaviour pre-factors
- Trained with genetic algorithm
- Regularisation method based on early stopping criterion

Extraction of DVCS CFFs from world proton data:

No.	Collab.	Year	Observa	ble	Kinematic dependence	No. of points used / all	101	PARTONS Fits
1	HERMES	2001	A_{LU}^+		ϕ	10 / 10	-	
2		2006	$A_C^{\cos i\phi}$	i = 1	t	4 / 4		
3		2008	$A_C^{\cos i\phi}$	i = 0, 1	x_{Bj}	18 / 24	-	
			$A_{UT}^{\sin(\phi-\phi_S)\cos i\phi}$	i = 0			-	
			$A_{UT}^{\sin(\phi-\phi_S)\cos i\phi}$	i = 0, 1				
			$A_{UT}^{\cos(\phi-\phi_S)\sin i\phi}$	i = 1			-	
4		2009	$A_{LU,\mathrm{I}}^{\sin i\phi}$	i = 1, 2	x_{Bj}	35 / 42		
			$A_{LU,\mathrm{DVCS}}^{\sin i\phi}$	i = 1				
			$A_C^{\cos i\phi}$	i = 0, 1, 2, 3				
5		2010	$A_{UL}^{+,\sin i\phi}$	i = 1, 2, 3	$x_{ m Bj}$	18 / 24	С С	\wedge
			$A_{LL}^{+,\cos i\phi}$	i = 0, 1, 2				\checkmark
6		2011	$A_{LT, \mathrm{DVCS}}^{\cos(\phi-\phi_S)\cos i\phi}$	i = 0, 1	$x_{ m Bj}$	24 / 32	$\int_{-\infty}^{-\infty}$	
			$A_{LT \text{ DVCS}}^{\sin(\phi-\phi_S)\sin i\phi}$	i = 1			Ŭ	
			$A_{LTI}^{\cos(\phi-\phi_S)\cos i\phi}$	i = 0, 1, 2				
			$A_{LT,I}^{\Sigma 1,1} \phi_{S} \sin i\phi$	i = 1, 2			-	
7		2012	$A_{LU,I}^{\sin i\phi}$	i = 1, 2	$x_{ m Bj}$	35 / 42		
			$A_{LU,\mathrm{DVCS}}^{\sin i\phi}$	i = 1				
			$A_C^{\cos i\phi}$	i = 0, 1, 2, 3			-	
8	CLAS	2001	$A_{LU}^{-,\sin i\phi}$	i = 1, 2		0 / 2		
9		2006	$A_{UL}^{-,\sin i\phi}$	i = 1, 2		2 / 2		
10		2008	A_{LU}^-		ϕ	283 / 737		
11		2009	A^{LU}		ϕ	22 / 33	100	
12		2015	A^{LU}, A^{UL}, A^{LL}		ϕ	311 / 497	10	-4
13		2015	$d^4 \sigma^{UU}$		ϕ	1333 / 1933	10	
14	Hall A	2015	$\Delta d^4 \sigma^{LU}$		ϕ	228 / 228		
15		2017	$\Delta d^4 \sigma_{LU}^-$		ϕ	276 / 358		
16	COMPASS	2018	$d^3 \sigma^{\pm}_{UU}$		t	2 / 4		
17	ZEUS	2009	$d^3\sigma^+_{UU}$		t	4 / 4		
18	H1	2005	$d^3\sigma^+_{UU}$		t	7 / 8		
19		2009	$d^{3}\sigma_{UU}^{\perp}$		t	12 / 12		
					SUM:	2624 / 3996		

H. Moutarde, PS, J. Wagner, Eur. Phys. J. C78 (2018) 11, 890

H. Moutarde, PS, J. Wagner, Eur. Phys. J. C 79 (2019) 7, 614

- ▼ HALL A
- ▲ CLAS
- HERMES
- COMPASS
- H1 and ZEUS

TCS amplitudes and observables from DVCS amplitudes

DVCS:

@ $Q^2 = 2 \text{ GeV}^2$, t = -0.3 GeV²

Grocholski, Moutarde, Pire, PS, Wagner Eur. Phys. J. C 80 (2020) 2, 171

TCS:

---- GK model (NLO)

TCS amplitudes and observables from DVCS amplitudes

cross-section:

Paweł Sznajder / Exclusive production of di-leptons / December 22, 2022

Grocholski, Moutarde, Pire, PS, Wagner Eur. Phys. J. C 80 (2020) 2, 171

circular beam asymmetry:

TCS from DVCS (NLO)

---- GK model (LO)

— GK model (NLO)

TCS at EIC

see Daria Sokhan's talk at 3DPartons workshop

Shadow term is closely related to the so-called shadow GPDs

Shadow GPDs have considerable size and:

- at the initial scale do not contribute to both PDFs and CFFs
- at some other scale they contribute negligibly

making the deconvolution of CFFs ill-posed

We found such GPDs for both LO and NLO

V. Bertone et al., Phys. Rev. D 103 (2021) 11, 114

_		_	
4	0	1	9

• The process allows to probe GPDs outside $x = \xi$ line, but is much more challenging experimentally

$$\mathcal{A}_{\text{DDVCS}} \stackrel{LO}{\sim} \int_{-1}^{1} dx \; \frac{1}{x - \xi + i0} \text{GPD}(x, \eta, t)$$

- We are revisiting DDVCS for phenomenological studies,

Paweł Sznajder / Exclusive production of di-leptons / December 22, 2022

Exclusive diphoton photoproduction

- Process probes C-odd GPDs
- No contribution of D-term
- No non-perturbative ingredients other than GPDs
- Both LO and NLO description available
- Gluons do not contribute also at NLO

O. Grocholski et al., Phys. Rev. D 105 (2022) 9, 094025 Phys. Rev. D 104 (2021) 11, 114006

Exclusive diphoton photoproduction

Angle of photon to the Z axis Histogram Number of events $\gamma(q)$ $\gamma(\mathbf{q})$ 10³ 10² 2.5 0.5 1.5 2 theta [rad] Photon energy Histogram Number of events 10⁴ (q (q_ 10² 10 E 16 18 20 E [GeV]

Paweł Sznajder / Exclusive production of di-leptons / December 22, 2022

B. Skura (Warsaw U. of Technology), PS preliminary results

• The process implemented in EpIC MC generator

• Condition used in generation of events

 $\begin{array}{ll} {\sf E} = 20 \; {\sf GeV} & 0 < -t < 1 \; {\sf GeV^2} \\ & 0 < -u < 6 \; {\sf GeV^2} \\ & 1 \; {\sf GeV^2} < {\sf M}_{\gamma\gamma}{}^2 < 5 \; {\sf GeV^2} \\ & 0 < \phi < 2\pi \end{array}$

0 < y < 1 $0 < Q^2 < 0.01 \text{ GeV}^2$

Event counts are scaled to 10 fb⁻¹

PARTONS project

- PARTONS open-source framework to study GPDs → http://partons.cea.fr
- Come with number of available physics developments implemented
- Written in C++, also available via virtual machines (VirtualBox) and containers (Docker)
- Addition of new developments as easy as possible
- Developed to support effort of GPD community, can be used by both theorists and experimentalists
- v3 version of PARTONS is now available!

B. Berthou et al., Eur. Phys. J. C 78 (2018) 6, 478

- Novel MC generator called EpIC released → https://pawelsznajder.github.io/epic
- EpIC is based on PARTONS
- EpIC is characterised by:
 - flexible architecture that utilises a modular programming paradigm
 - a variety of modelling options, including radiative corrections
 - multichannel capability (initial version includes DVCS, TCS and DVMP)

E. C. Aschenauer et al., 2205.01762 [hep-ph]

• This is the new tool to be use in the precision era commenced by the new generation of experiments

Takeaway messages:

- TCS:
 - useful to prove universality of GPDs
 - impact of NLO corrections
 - constrain Q2-dependance of CFFs
- DDVCS
 - crucial to study GPD away of x=xi line
- other exclusive processes, like diphoton production, important to constrain GPDs
- Tools to study these processes available (or will be available in near future)
- Measurement of all these processes is very challenging, in particular we need:
 - high luminosity
 - muon ID
 - wide Q2 coverage

Takeaway messages:

- TCS:
 - useful to prove universality of GPDs
 - impact of NLO corrections
 - constrain Q2-dependance of CFFs
- DDVCS
 - crucial to study GPD away of x=xi line
- other exclusive processes, like diphoton production, important to constrain GPDs
- Tools to study these processes available (or will be available in near future)
- Measurement of all these processes is very challenging, in particular we need:
 - high luminosity
 - muon ID
 - wide Q2 coverage

