

## Imaging heavy-ion initial condition & nuclear structure

#### Jiangyong Jia



based partially on arXiv:2209.11042

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

12/7/2022



## e+p/A vs nuclear collisions

• EIC: structures of nucleon and nuclear initial state



Heavy-ion: Initial state and emergence of collectivity.



## e+p/A vs nuclear collisions

- EIC: structures of initial state (one-body Wigner distribution)
  - Precise control on kinematics



Heavy-ion: Multi-Parton interactions (many-body distributions)



Probe distributions of nucleons and partons via collective response

## Rich structure of atomic nuclei

β<sub>2</sub>-landscape

- Collective phenomena of many-body quantum system
  - clustering, halo, bubble, skin, deformations...
  - Momentum correlation e.g. SRC
  - Nontrivial evaluation with N and Z.



## Collective structure for heavy ion collision

5

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{(r-R(\theta,\phi))/a_0}}$$

$$R(\theta,\phi) = R_0 \left(1+\beta_2 [\cos\gamma Y_{2,0}+\sin\gamma Y_{2,2}]+\beta_3 \sum_{m=-3}^3 \alpha_{3,m} Y_{3,m}+\beta_4 \sum_{m=-4}^4 \alpha_{4,m} Y_{4,m}\right)$$



## High-energy heavy ion collision

6



Key features facilitating the connection to nuclear structure 1) Extremely short passing time means that collision takes a snap-shot of the nuclear and nucleon wavefunction in the two nuclei. 2) Large particle production in overlap region means the produced QGP expands hydrodynamically in each event

## Connection to nuclear structure



High energy: approx. linear response in each event: 
$$N_{ch} \propto N_{part} - rac{\delta[p_T]}{[p_T]} \propto -rac{\delta R_{\perp}}{R_{\perp}} V_n \propto \mathcal{E}_n$$

- Discuss how nuclear structure impacts the initial condition and observables
- Case study with isobar collision data.
- Discuss the prospect of nuclear structure imaging with system scan.

#### How nuclear shape influences HI initial condition



#### Expected structure dependencies





The shape and size the overlap, therefore  $v_2$  and  $p_T$ , also depend on diffuseness  $a_0$  and radius  $R_0$ 

At fixed N<sub>part</sub>

$$\begin{array}{cccc} a_0 & \Longrightarrow & v_2 & p_T \\ R_0 & \Longrightarrow & p_T & \end{array}$$

7

9

## Low-energy vs high-energy method

• Shape from B(En), radial profile from e+A or ion-A scattering



Shape frozen in crossing time (<10<sup>-24</sup>s), probe entire mass distribution via multi-point correlations.



Collective flow response to nuclear structure



 $S(\mathbf{s}_1, \mathbf{s}_2) \equiv \langle \delta \rho(\mathbf{s}_1) \delta \rho(\mathbf{s}_2) \rangle \\ = \langle \rho(\mathbf{s}_1) \rho(\mathbf{s}_2) \rangle - \langle \rho(\mathbf{s}_1) \rangle \langle \rho(\mathbf{s}_2) \rangle.$ 

## **High-order fluctuations**

- In principle, can measure any moments of  $p(1/R, \varepsilon_2, \varepsilon_3...)$ 
  - Mean  $\langle d_{\perp} \rangle$ • Variances:  $\langle \varepsilon_n^2 \rangle$ ,  $\langle (\delta d_\perp/d_\perp)^2 \rangle = 1/R_\perp$ • Skewness  $\langle \varepsilon_n^2 \delta d_\perp/d_\perp \rangle$ ,  $\langle (\delta d_\perp/d_\perp)^3 \rangle$   $\langle v_n^2 \delta p_T/p_T \rangle$ ,  $\langle (\delta p_T/p_T)^3 \rangle$
  - Kurtosis  $\langle \varepsilon_n^4 \rangle 2 \langle \varepsilon_n^2 \rangle^2, \left\langle (\delta d_\perp/d_\perp)^4 \right\rangle 3 \left\langle (\delta d_\perp/d_\perp)^2 \right\rangle^2 \quad \left\langle v_n^4 \right\rangle 2 \left\langle v_n^2 \right\rangle^2, \left\langle (\delta p_{\mathrm{T}}/p_{\mathrm{T}})^4 \right\rangle 3 \left\langle (\delta p_{\mathrm{T}}/p_{\mathrm{T}})^2 \right\rangle^2$
- All with rather simple connection to deformation, for example:
  - Variances

. . .

Skewness

$$egin{aligned} &\langle arepsilon_2^2 
angle &\sim a_2 + b_2 eta_2^2 + b_{2,3} eta_3^2 \ &\langle arepsilon_3^2 
angle &\sim a_3 + b_3 eta_3^2 \ &\langle arepsilon_4^2 
angle &\sim a_4 + b_4 eta_4^2 + b_{4,2} eta_2^2 \ &(\delta d_\perp / d_\perp)^2 
angle &\sim a_0 + b_0 eta_2^2 + b_{0,3} eta_3^2 \end{aligned}$$

- $\langle \varepsilon_2^2 \delta d_\perp / d_\perp \rangle \sim a_1 b_1 \cos(3\gamma) \beta_2^3$  $\left( \left( \delta d_{\perp}/d_{\perp} 
  ight)^3 
  ight) ~~ \sim a_2 + b_2 \cos(3\gamma) eta_2^3$
- Kurtosis

$$\frac{\langle \varepsilon_2^4 \rangle - 2 \langle \varepsilon_2^2 \rangle^2}{\langle (\delta d_\perp / d_\perp)^4 \rangle - 3 \langle (\delta d_\perp / d_\perp)^2 \rangle^2} \sim a_4 - b_4 \beta_2^4$$

## Isobar collisions at RHIC: a precision tool



arXiv:2109.00131

- Designed to search for the chiral magnetic effect: strong P & CP violation of QCD in the presence of EM field. Turns out the CME signal is small, and isobar-differences are dominated by the nuclear structure differences.
- <0.4% precision is achieved in ratio of many observables between  $^{96}$ Ru+ $^{96}$ Ru and  $^{96}$ Zr+ $^{96}$ Zr systems  $\rightarrow$  a precision imaging tool

## Isobar collisions at RHIC: a precision tool <sup>13</sup>

• A key question for any HI observable **O**:



Deviation from 1 must has origin in the nuclear structure, which impacts the initial state and then survives to the final state.

## Isobar collisions at RHIC: a precision tool

A key question for any HI observable O:



Deviation from 1 must has origin in the nuclear structure, which impacts the initial state and then survives to the final state.

Expectation



| $ \rho(r, \theta, \phi) \propto \frac{1}{1+r} $   | $\frac{1}{1 + \frac{1}{2} [r - R_0 (1 + \beta_2 Y_0^0(\theta, \phi) + \beta_3 Y_0^0(\theta, \phi))]/a_0}$ |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1 + 6                                             | 2109.00131                                                                                                |  |  |  |  |
| $\mathcal{O} \approx b_0 + b_1 \beta_2^2 + b_1^2$ | $b_2\beta_2^2 + b_3(R_0 - R_{0,rof}) + b_4(a - a_r)$                                                      |  |  |  |  |

$$\mathcal{D} \approx b_0 + b_1 \beta_2^2 + b_2 \beta_3^2 + b_3 (R_0 - R_{0,\text{ref}}) + b_4 (a - a_{\text{ref}})$$

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

#### Only probes isobar differences

Relate to neutron skin: 
$$\Delta r_{np} = \langle r_n \rangle^{1/2} - \langle r_p \rangle^{1/2}$$
  

$$\Delta r_{np,Ru} - \Delta r_{np,Zr} \propto (R_0 \Delta R_0 - R_{0p} \Delta R_{0p}) + 7/3\pi^2 (a\Delta a - a_p \Delta a_p)$$
mass

| Sly4       |                    |                    |                    |                    |  |  |  |  |
|------------|--------------------|--------------------|--------------------|--------------------|--|--|--|--|
| Species    | $\beta_2$          | $eta_3$            | $a_0$              | $R_0$              |  |  |  |  |
| Ru         | 0.162              | 0                  | $0.46~\mathrm{fm}$ | $5.09~\mathrm{fm}$ |  |  |  |  |
| Zr         | 0.06               | 0.20               | $0.52~\mathrm{fm}$ | $5.02~\mathrm{fm}$ |  |  |  |  |
| difference | $\Delta \beta_2^2$ | $\Delta \beta_3^2$ | $\Delta a_0$       | $\Delta R_0$       |  |  |  |  |
|            | 0.0226             | -0.04              | -0.06 fm           | $0.07~\mathrm{fm}$ |  |  |  |  |

### Structure influences everywhere



15

 $\mathcal{O}_{\mathrm{Ru}}$ 

 $R_{\mathcal{O}} \equiv$ 

### Nuclear structure via $v_2$ -ratio and $v_3$ -ratio

16



## Nuclear structure via $v_2$ -ratio and $v_3$ -ratio <sup>17</sup>



## Nuclear structure via v<sub>2</sub>-ratio and v<sub>3</sub>-ratio

18



## Nuclear structure via v<sub>2</sub>-ratio and v<sub>3</sub>-ratio

19



## Nuclear structure via v<sub>2</sub>-ratio and v<sub>3</sub>-ratio<sup>20</sup>



Simultaneously constrain these parameters using different N<sub>ch</sub> regions

### Nuclear structure via $p(N_{ch})$ , $< p_T >$ -ratio<sup>21</sup>



## Energy dependence: RHIC vs LHC



- x3 more particle density at  $\sqrt{s_{NN}}$ =5 TeV compare to 0.2 TeV
- But the shape after rescaling looks quite similar  $\rightarrow$  collision geometry

## Results at LHC at 5 TeV

 $p(N_{trk}^{offline})_{Ru}/p(N_{trk}^{offline})_{Zr}$ 

STAR data

 $\begin{array}{l} \text{AMPT} \ \boldsymbol{\beta}_{2,3} \\ \text{AMPT} \ \boldsymbol{\beta}_{2,3} \ \boldsymbol{a}_{0} \\ \text{AMPT} \ \boldsymbol{\beta}_{2,3} \ \boldsymbol{a}_{0} \ \boldsymbol{R}_{0} \end{array}$ 

100

🔶 AMPT β

23

2 1 0.2%

300

5

200

- The influence of nuclear shape and skin play similar role for  $p(N_{ch})$  and  $v_2$
- But stronger impact of  $\beta_3$  on  $v_3$  (:)
- Initial condition is  $\sqrt{s}$  dependent: AMPT has nPDF and toy saturation effects implemented via p<sub>0</sub> and Lund parameters.



## Isobar ratios not affected by final state

- Vary the shear viscosity via partonic cross-section
  - Flow signal change by 30-50%, the v<sub>n</sub> ratio unchanged.



Robust probe of initial condition!





24

### Isobar to constrain initial condition



#### Use nuclear structure as extra lever-arm for initial condition

#### Exploiting the structure lever-arm



# Example: Nuclear structure effects in light nuclei<sup>27</sup>

Flow in <sup>16</sup>O+<sup>16</sup>O could be sensitive to SRC, clustering, but difficult to isolate due to lack of baseline.



# Example: Nuclear structure effects in light nuclei<sup>28</sup>

Flow in <sup>16</sup>O+<sup>16</sup>O could be sensitive to SRC, clustering, but difficult to isolate due to lack of baseline.



## Example: shape evolution of <sup>144–154</sup>Sm isotopic chain<sup>29</sup>

Transition from nearly-spherical to well-deformed nuclei when size increase by less than 7%. Using HI to access the multi-nucleon correlations leading to such shape evolution, as well as dynamical  $\beta_3$  and  $\beta_4$ shape fluctuations (in addition to initial condition)



 $egin{aligned} & ext{ In central collisions} \ & \left< \epsilon_2^2 \right> = a' + b' eta_2^2 \ & a' = \left< \varepsilon_2^2 \right>_{|eta_2=0} \propto 1/A \ & \left< v_2^2 \right> = a + b eta_2^2 \ & a = \left< v_2^2 \right>_{|eta_2=0} \propto 1/A \end{aligned}$ 

b', b are ~ independent of system



Systems with similar A falls on the same curve.

Fix a and b with two isobar systems with known  $\beta_2$ , then predict others.

## Application in <sup>197</sup>Au+<sup>197</sup>Au vs <sup>238</sup>U+<sup>238</sup>U <sup>30</sup>



Suggests  $|\beta_2|_{Au} \sim 0.18 + 0.02$ , larger than NS model of 0.13+-0.02



Need 3-point correlators to probe the 3 axes

 $ig\langle v_2^2 \delta p_{
m T} 
angle \sim -eta_2^3 \cos(3\gamma) \qquad ig\langle (\delta p_{
m T})^3 
angle \sim eta_2^3 \cos(3\gamma)$ 

2109.00604

 $\begin{aligned} \mathsf{Triaxial}\\ \beta_2 = 0.25, \cos(3\gamma) = 0 \end{aligned}$ 



Oblate  $\beta_2 = 0.25, \cos(3\gamma) = -1$ 





## Influence of triaxiality: Glauber model

#### Skewness sensitive to y

Described by

$$\left\langle arepsilon_2^2 rac{\delta d_\perp}{d_\perp} 
ight
angle \propto \left\langle v_2^2 \delta p_{
m T} 
ight
angle \propto a + b \cos(3\gamma) eta_2^3$$

#### variances insensitive to $\gamma$

$$\left< arepsilon_2^2 
ight
angle \propto \left< v_2^2 
ight
angle \propto a + b eta_2^2$$



Use variance to constrain  $\beta_2$ , use skewness to constrain  $\gamma$ 

## $(\beta_2, \gamma)$ diagram in heavy-ion collisions

34

The  $(\beta_2, \gamma)$  dependence in 0-1%  $\langle \varepsilon_2^2 \rangle \approx [0.02 + \beta_2^2] \times 0.235$   $\rho = \frac{\langle \varepsilon_2^2 \delta d_\perp \rangle}{\langle \varepsilon_2^2 \rangle \sqrt{\langle (\delta d_\perp)^2 \rangle}}$ approximated by:  $\langle \varepsilon_2^2 \delta d_\perp / d_\perp \rangle^2 \rangle \approx [0.005 - (0.07 + 1.36\cos(3\gamma))\beta_2^3] \times 10^{-2}$ 

 $d_\perp \propto 1/R_\perp$ 



Collision system scan to map out this trajectory: calibrate coefficients with species with known  $\beta$ , $\gamma$ , then predict for species of interest.

## Summary

- Constrain QGP initial condition with nuclear structure input, important for extraction of QGP properties
- Understanding how initial condition responds to nuclear structure, in turn enables imaging of nuclear structure properties.
- Collisions of carefully-selected isobar species (at LHC) will improve study of initial condition from small to large system



#### arXiv:2102.08158

| A   | isobars    | A   | isobars    | A   | isobars    |
|-----|------------|-----|------------|-----|------------|
| 36  | Ar, S      | 106 | Pd, Cd     | 148 | Nd, Sm     |
| 40  | Ca, Ar     | 108 | Pd, Cd     | 150 | Nd, Sm     |
| 46  | Ca, Ti     | 110 | Pd, Cd     | 152 | Sm, Gd     |
| 48  | Ca, Ti     | 112 | Cd, Sn     | 154 | Sm, Gd     |
| 50  | Ti, V, Cr  | 113 | Cd, In     | 156 | Gd, Dy     |
| 54  | Cr, Fe     | 114 | Cd, Sn     | 158 | Gd, Dy     |
| 64  | Ni, Zn     | 115 | In, Sn     | 160 | Gd, Dy     |
| 70  | Zn, Ge     | 116 | Cd, Sn     | 162 | Dy, Er     |
| 74  | Ge, Se     | 120 | Sn, Te     | 164 | Dy, Er     |
| 76  | Ge, Se     | 122 | Sn, Te     | 168 | Er, Yb     |
| 78  | Se, Kr     | 123 | Sb, Te     | 170 | Er, Yb     |
| 80  | Se, Kr     | 124 | Sn, Te, Xe | 174 | Yb, Hf     |
| 84  | Kr, Sr, Mo | 126 | Te, Xe     | 176 | Yb, Lu, Hf |
| 86  | Kr, Sr     | 128 | Te, Xe     | 180 | Hf, W      |
| 87  | Rb, Sr     | 130 | Te, Xe, Ba | 184 | W, Os      |
| 92  | Zr, Nb, Mo | 132 | Xe, Ba     | 186 | W, Os      |
| 94  | Zr, Mo     | 134 | Xe, Ba     | 187 | Re, Os     |
| 96  | Zr, Mo, Ru | 136 | Xe, Ba, Ce | 190 | Os, Pt     |
| 98  | Mo, Ru     | 138 | Ba, La, Ce | 192 | Os, Pt     |
| 100 | Mo, Ru     | 142 | Ce, Nd     | 198 | Pt, Hg     |
| 102 | Ru, Pd     | 144 | Nd, Sm     | 204 | Hg, Pb     |
| 104 | Bu. Pd     | 146 | Nd. Sm     |     |            |

## **Concluding remarks**

• HI relied on NS and DIS to provide inputs on initial state of A and p.

Nuclear structure

Heavy lon physics

**Partonic Structure** 

- HI physics now is precise enough to feedback to NS and DIS
  - Clearly possible in large A+A system. As understanding of early state improves, might be possible even in small system? Continued analysis & interpretation of HI data is important



## Neutron skin in high-energy collisions

0.3

The famous PREX and CREX has tension with theory and previous exp. Indicate a larger L value.  $\Delta r_{\rm np,Pb} = 0.28 \pm 0.07 {\rm fm}$  $\Delta r_{\rm np,Ca} = 0.14 \pm 0.03 {\rm fm}$ 

• Access the difference of neutron skin by comparing 40Ca+40Ca and 48Ca+48Ca

We know:

$$egin{aligned} \mathsf{W}: & \sqrt{ig\langle r_\mathrm{p}^2 ig
angle} ig(^{48}\mathrm{Ca}ig) = \sqrt{ig\langle r_\mathrm{p}^2 ig
angle} ig(^{40}\mathrm{Ca}ig) \ & \sqrt{ig\langle r_\mathrm{p}^2 ig
angle} ig(^{40}\mathrm{Ca}ig) pprox \sqrt{ig\langle r_\mathrm{n}^2 ig
angle} ig(^{40}\mathrm{Ca}ig) \end{aligned}$$

Hence :

$$egin{aligned} \Delta_{
m np}ig(^{48}{
m Ca}ig) & - \Delta_{
m np}ig(^{40}{
m Ca}ig) &\simeq \Delta_{
m np}ig(^{48}{
m Ca}ig) \ &\propto ar{R}_0\Delta R_0 + 7/3\pi^2ar{a}\Delta a \end{aligned}$$



0.2

 $R_{n} - R_{p} (^{208} Pb, fm)$ 

0.1

90%

0.4

0.3

## Separating shape and size effects

39



## Shape fluctuations

 Shape fluctuations and shape coexistence can be accessed via highorder correlations



## Shape fluctuations

 Shape fluctuations and shape coexistence can be accessed via highorder correlations.

