EIC diffractive/exclusive physics requirements with some thoughts on a second detector

Spencer Klein, LBNL

Presented to the EICUG 2nd detector meeti December 6-8, 2022

- Photo & electroproduction at an EIC
- Bjorken-x and rapidity
 - Near threshold photoproduction
 - Low-x production
- Charged photoproduction & the structure of exotics
- Backward photoproduction via baryon exchange & baryon stopping*
- Conclusions

Photoproduction and Electroproduction

- Two models
- Gluon exchange
 - Lowest order is 2-gluon exchange
 - Higher orders is gluon ladder
- Pomeron + Reggeon exchange
 - Pomeron is gluon ladder
 - J^{PC}=0⁺⁺ explains vector meson dominance
 - Absorptive part of the potential
 - Reggeon involves quark exchange
 - meson trajectories (q-qbar)
 - Wide range of spin, parity and charge
 - Allows production of pentaquarks, other exotica etc.

Pomerons, Reggeons and kinematics HERA + fixed target data

Photoproduction vs. electroprodution

- Most EIC attention is on electroproduction (Q² > 1 GeV²)
- Photoproduction (Q² < 1 GeV²) is critical for studying shadowing, which should disappear at large Q²
 - Good acceptance is needed for vector mesons at low p_T
- Shadowing is larger for lighter mesons
 - ρ/ϕ are experimentally important

From eSTARlight. Similar plot by Mantyssari and Venugopalan, Phys. Lett. B **781**, 664 (2018)

The $\rho^{\rm 0}$

- 10⁻⁴ < x < 1 corresponds to -4 < y < 4</p>
- Coverage up to rapidity |y| requires coverage to |η| > |y|+1

5

The ϕ

- Φ ->K⁺K⁻ is the only viable decay mode
 - - Relationship between kaon $<\eta>$ and $\phi <y>$ is nonlinear
 - Reduces detection efficiency at large |y|
- For photoproduction near y=0, kaons have p=135 MeV/c
 - Highly ionizing
 - Requires low B field and very low material to detect
- Need PID to reject background from exclusive ρ

Rapidity vs. kaon pseudorapidity

 ϕ detection efficiency in an all-silicon tracker ⁶

Separating Coherent and Incoherent production

- In the Good-Walker paradigm, coherent photoproduction is sensitive to the average nuclear shape, while the incoherent production is sensitive to event-by-event fluctuations
 - Need 500:1 coherent:incoherent separation at 2nd minimum
 - Neutron or proton emission is easy, but there are excitations that decay by emitting MeV (in the target frame) photons
 - Situation murky; requires good acceptance for far-forward E< 100 MeV

Lead preferred over gold. It has no low-lying, long-lived states

7

Observing diffractive dips

- do/dt for coherent photoproduction probes the transverse gluon distribution in nuclei – like GPDs, but for nuclei.
- Requires good measurement of t ~ p_{T,Pomeron}²
- $P_{T,VM} = P_{T,Pomeron} \bigoplus P_{T,photon} \bigoplus Resolution$
 - Need photon p_T to accurately determine Pomeron p_T
 - Observe scattered electron down to low Q²
 - Limited by beam emittance; easier at higher k/E_e

Reggeon exchange and forward production

- Examples: the $a_2^+(1320)$ standard candle and the exotic $Z_c^+(4430)$
- Use data/calculations of σ(γp->X+n) as input to eSTARlight to predict dσ/dy for the same process in EIC collisions/
 - > Use the same Q² scaling as the ρ (for the a₂) and J/_y (for the Z_c)

a₂⁺(1320) and Z_c⁺(4430) production in ep collisions at the EICs

- The a₂⁺(1320) is mainly at negative rapidity
 - σ ~80 nb at eRHIC
 - Copiously produced
- The Z_c⁺(4430) is heavier, and so somewhat more centrally produced.
 - σ is 0.26 nb at eRHIC
- Both require good ion-going acceptance to be observable
- Both might be easier to observe at lower beam energies

SK and Ya-Ping Xie, PRC 100, 024620 (2019)

Backward meson production

- In backward production, |t| is large, but |u| is small
- Transports baryon number over several units of rapidity
 - Baryon transport
 - Vector meson takes most of baryon momentum
- Studied extensively at fixed-target facilities (including JLab)
- Describable with Regge theory or transition distribution amplitudes (kind of like GPDs)

D. Cebra *et al.,* Phys. Rev. C **106**, 015204 (2022)

Backward production at an EIC

- Use parameterizations based on fixed-target data
 - Focus on ω , since the best data is available
- Extrapolate to EIC energies, etc.
- Consider $\omega \rightarrow \pi^0 \gamma$ and $\rho \rightarrow \pi^+ \pi^-$
 - One all-neutral and one all-charged final state
- Rates are ample probably enough to study heavier mesons, like the φ and maybe J/ψ
 - Cross-sections are guestimates, since these mesons share no valence quarks with the proton
- - ♦ Usual do/dt~exp(-bt) swapped for do/du ~ exp(-ct)

Beam energy dependence of ω peak

- For 275 GeV proton beams, y_{ω} rapidity ~ 6.5
- For 41 GeV protons beams
 - Proton rapidity = 0.0 -> typical ω rapidity is 4.6
 - Proton rapidity = 4.0 -> typical ω rapidity is 3.7
- Need to explore full phase space, but lower proton beam energies seem better
 1.4

Backward $\boldsymbol{\omega}$ production at the EIC

- Forward detectors are critical
 - B0 detector is key in existing designs
 - Gaps around B0 detector are painful
 - ZDC needs to detect multiple photons
- Detection best at less than full beam energies

14

Backward ρ at the EIC

- Requires charged particle momentum measurement in B0 magnet detector
- ZDC not useful

How would a 2nd detector/low energy improve the rapidity/energy coverage?

- Low-energy running shifts the forward region toward mid-rapidity.
 - Near-threshold production, pentaquarks etc. become more central
- This does not work on the low-x side
 - Good rapidity coverage is needed to exploit the full EIC energy
- Another partial solution: instrument the IR above & below the plane where the beams diverge

A radical suggestion (for discussion)

- Much interesting diffractive/exclusive physics requires excellent forward instrumentation
 - Some topics can live with lesser central-barrel coverage
- Consider a forward-spectrometer-like approach, ala LHCb
 - Likely with wider rapidity coverage
 - With a dipole magnet
 - Necessary detector 'holes' could be at mid-rapidity

Conclusions

- Very wide pseudorapidity coverage is required to study vector meson production over the full range of Bjorken-x.
- Near-threshold production & Reggeon-exchange production, including exotica requires good forward acceptance
 - Running at a reduced ion beam energy will shift this production toward mid-rapidity.
- These requirements challenge EPIC in some places.
- Excellent far-forward ion-going detectors are required to separate coherent and incoherent photoproduction.
- Backward production reactions lead to mid-rapidity baryons and far-forward mesons. The later are a detector challenge, requiring more study.
- A second detector could emphasize forward coverage, at the expense of the central barrel.

Near threshold quarkonium production

- Near-threshold quarkonium production is sensitive to new mechanisms $\sigma(\gamma p \rightarrow J/\psi p)$, nb 10 (i. e. 3-gluon exchange)
 - GlueX data favors a mix gluon exchange for J/ψ

- Sensitive to near-threshold
 - $P_{C}^{+}(4440) == J/\psi p$
 - Pentaquark candidate

- EIC will study ψ ', Y states and probe the Q² dependence of multiple resonances
- For nuclei, near-threshold or sub-threshold production is sensitive to short-range nuclear correlations.
- Requires good acceptance in the ion-going direction

Photoproduction & electroproduction in eSTARlight

- Convolution of photon flux from electron with σ(γp->Vp)
 Both depend on Q²
- Weizsacker-Williams photon flux (with non-zero Q²)
- VM cross-sections parameterized from HERA data/theory....
 - Reggeon and Pomeron exchange
 - Q² dependence via a power law from HERA data
- Other cross-sections from theory predictions
- Nuclear targets included with a Glauber calculation
- Vector mesons retain the photon spin
 - For Q² ~ 0, transversely polarized
 - As Q² rises, longitudinal polarization enters
 - Spin-matrix elements quantified with HERA data
- Embodied in eSTARlight code, available at: https://github.com/eic/estarlight/

Ψ (2S) & Y photoproduction at eRHIC

- 18 GeV e⁻ on 275 GeV protons
- Ψ(2S): σ=1.4 nb (1/6 of σ(J/ψ))
 - 14 million events in 10 fb⁻¹
- 300,000 events with photon energy <50 GeV (target frame)
 - Ψ (2s) threshold region is 3.5 < y < 3.0 for this configuration
 - ~ 2,800 each Ψ(2S)->ee, μμ
- σ(Y(1S))=0.01σ(ψ')
 - 140,000 events/10fb⁻¹
 - ~3,000 each to ee, μμ
 - ~3,000 near-threshold events
 - ~75 each to ee, μμ
 - More central than ψ'

Ψ (2S)->ee lepton pseudorapidities

- Lepton pseudorapidity depends on Y(2S) rapidity, p_T and polarization (which depends on Q²)
- Leptons from most near-threshold (k<50 GeV target frame) ψ(2S)->ll decays have -5<y<-2
 - Good acceptance required in hadron-going direction
 - N.b. Br(ψ (s)->ee or $\mu\mu$ is 0.7%. Plus J/ $\psi\pi^+\pi^-$
- Rates for Y(1S) smaller - usable.
- Higher ψ states accessible

23

Expected event rate for vector mesons, $a_2^+(1320)$ and Z_C^+

- Total cross sections and expected events for vector mesons and two charged particles in ep collisions
 - ♦ 10 fb⁻¹ integrated luminosity

	Events ($0 < Q^2 < 1.0 GeV^2$)				Events $(Q^2 > 1.0 GeV^2)$			
	ρ	ϕ	J/ψ	ψ'	ρ	ϕ	J/ψ	ψ'
eRHIC -ep	$50~{ m giga}$	$2.3 { m ~giga}$	85 mega	14 mega	140 mega	$17 \mathrm{mega}$	$5.7 \mathrm{mega}$	1.2 mega
eRHIC -eA	44 giga	2.8 mega	100 mega	16 mega	$37 \mathrm{mega}$	5.6 mega	3.9 mega	960 kilo
JLEIC -ep	$37~{ m giga}$	1.6 giga	39 mega	6.0 mega	$100.0~{\rm mega}$	12.0 mega	$2.7 \mathrm{mega}$	550 kilo
JLEIC -eA	$28 \mathrm{giga}$	$1.6 \mathrm{giga}$	28 mega	3.9 mega	22 mega	3.2 mega	1.2 mega	250 kilo
LheC -ep	100 giga	$5.6~{ m giga}$	470 mega	78 mega	260 mega	37 mega	29 mega	6.3 mega
LHeC -eA	110 giga	$8.2~{ m giga}$	720 mega	140 mega	100 mega	16 mega	27 mega	7.2 mega

	Eve	nts $(0 < 0)$	$Q^2 < 1.0 Ge$	eV^2)	Events $(1.0 \text{GeV}^2 < \text{Q}^2 < 5.0 \text{GeV}^2)$			
	eRHIC	JLEIC	LHeC	EicC	\mathbf{eRHIC}	JLEIC	LHeC	EicC
$a_2^+(1320)$	$0.79 \mathrm{giga}$	$0.69 \mathrm{giga}$	1.06 giga	0.47 giga	5.1 mega	5.0 mega	5.2 mega	4.0 mega
$Z_{c}^{+}(4430)$	2.6 mega	$2.2 \mathrm{mega}$	3.6 mega	$0.94~\mathrm{mega}$	0.12 mega	$0.12 \mathrm{mega}$	0.12 mega	68.0 kilo

Theoretical approach - I

GPD-like model, with Transition Distribution Amplitude quantifying baryon trajectories.

Diagram from K. Park et al., Phys. Lett. B780, 340 (2018)

Theoretical approach II – Baryon trajectories

- For baryonic Regge trajectory
 - $\sigma(W) = XW^{\epsilon} + YW^{-\eta}$
 - Replace t with u, and much familiar behavior is restored.
 - Similar to meson trajectories
- Key trajectories: N, Δ ,

• Λ/Σ for strangeness (not today)

Implications for baryon stopping

- Conventional wisdom: Regge phenomenology only matters at low energy
 - But... the relevant energy is the dipole-baryon CM energy.
 - soft dipole -> small CM energy.
 - Low-energy UPC photon
 - + A soft virtual π

- A low-x q-qbar dipole
- Other configuration within an incident nucleus
- The baryon recoils but remains intact
 - Transport over multiple units in rapidity.
 - Like baryon stopping.
 - Phenomenology is very reminiscent of the baryon junction model.
 - Are there connections?

Vance, Gyulassy and Wang, Phys. Lett. B443, 45 (1998)

Angular definitions

V rest frame

Rapidity vs. Q²

Parameterization of backward γp -> ωp

- o is best studied backward photoproduction case
 - Fit to data from two experiments
- Assume same Reggeon-like form as forward production:
 - $d\sigma/dt|_{t=0} \sim A (s/1GeV)^B$ embodies physics of reaction
 - $d\sigma/dt \sim exp(-Ct)$ accounts for form factor (size) of target
 - Swap u for t, to match behavior of backward kinematics
- $d\sigma/du|_{u\sim 0} = A (s/1GeV)^B$
 - A = 4.4 μb/GeV²
 - A=180 μb/GeV² for forward ω photoproduction
 - ◆ B = -2.7
 - + B=-1.92 for forward ω photoproduction
- dσ/du ~ exp(-Cu), with C=-21 GeV⁻²
 - Similar slope as C in e^{Ct} term for forward γp -> ρp
- Rate is few % of the forward rate for k~ GeV
 - Falls off a bit faster with increasing energy.
 - Cross-sections are large enough to be easily accessible.