CFNS Workshop on a Second EIC Detector 6–8 December 2022 Stony Brook University

Exclusive Scattering on Nuclei

Charles E. Hyde Old Dominion University

Spatial Properties of the Nucleon

- 1+2 dimensional tomography
 - $q(x,b) \overline{q}(x,b)$,
 - $q(x,b) + \overline{q}(x,b)$,
 - G(*x,b*)
- Longitudinal momentum x determined by (e,e') kinematics
- Transverse momentum transfer Δ_{\perp} Fourier-conjugate to impact parameter ${f b}$
- No reason to suppose common spatial distributions
 - Pion cloud concept implies $q+ar{q}$, spatially broader than $q-ar{q}$
 - Gluon radius of proton?

• "Proton radius =
$$\sqrt{\int b^2 [q(x,b) - \overline{q}(x,b)]} dx$$

Exclusive scattering on the Nucleon

- $eN \rightarrow eN\gamma$
- $eN \rightarrow eNV$, $V = \rho^0$, ϕ , J/Ψ , ... etc.
- No direct measurement of q(x,b), but strong constraints, (dispersive integrals, etc.)
- Flavor sensitivity (u,d,s) from
 - $ep \rightarrow ep\gamma$ vs. $en \rightarrow en\gamma$
 - $ep \rightarrow ep \rho^0$ vs. $ep \rightarrow en \rho^+$ or $ep \rightarrow ep\omega$
 - ер → еК+Л
- Quark vs. Gluon sensitivity
 - $ep \rightarrow ep \gamma$,
 - ep → ep φ,
 - ep → ep J/Ψ

Exclusive Scattering on Nuclei

• $e^{Z}A \rightarrow e^{Z}A\gamma$, $e^{Z}A \rightarrow e^{Z}A\phi$,

$$e^{Z}A \rightarrow e^{Z}AJ/\Psi$$
, etc.

- Convolution of nucleon spectral functions in nuclei with nucleon GPDs
 - R.Dupre, S.Scopetta EPJA **52** (2016) 159 \rightarrow
 - S.Fucini, S.Scopetta, M. Viviani, PRC **98** (2016) 015203
 - TOPEG Event generator
 - S. Liuti, S. Taneja, PRC **72** (2005) 034902.
 - V. Guzey, arXiv.org:0907.4124 [hep-ph]

Nuclei as quark-gluon structures

- Effects are not necessarily small
- Nuclear Hadrodynamics:
 - Relativistic *N*, ρ , ω , σ , π fields;
 - Proton mass modified in nuclear medium by ≈ factor of 2!
- Nuclear Effects vary with flavor (q, g) and with momentum (x).
 - Some non-nucleon dynamics in S. Liuti, S. Taneja, PRC 72 (2005) 034902

- EMC, Anti-shadowing, Shadowing, Saturation to be studied at EIC with Jets, SIDIS, TMDs, etc
 - Phenomenology suggest anti-shadowing is primarily glue.
- Exclusive scattering has an important role to play
- Shadowing is the reference against which we must assess signals of Saturation.
- Spectator tagging on *d*, ³He, *etc* provides a reference "nearly on-shell" neutron, and enables the study of medium effects in those same nuclei

Challenges of Exclusive Scattering

- Exclusivity
 - Recoil nucleus lost in 10 σ beam envelope
 - Need near hermetic veto on inelastic/break-up channels
 - Forward p, n, even γ
 - $\circ~$ 3-layer ZDC: High resolution PreCAL of $^{\sim}5X_0$ for photons < 100 MeV
 - \circ 20X₀ EMCal for high energy gammas,
 - $\circ~$ HCal for neutrons
 - Daughter nuclei: Rigidity $K = P_A/Q_A$
 - Secondary focus extends tag/veto to $|1-K'/K_0| \ge 0.01$ Resolves $\Delta A \ge 1$ up to Zr and $\Delta A \ge 2$ up to Pb.
- Momentum transfer Δ^{μ} resolution
 - Nuclear size ~ (1 fm) $A^{1/3} \rightarrow$ Diffractive minima at ~ 0.2GeV/ $A^{1/3}$
 - Medium to heavy nuclei, beam momentum spread is $\geq 0.2 \text{GeV/A}^{1/3}$

Exclusivity Tagging or Inclusive Veto?

- Proton, 275 GeV
 - Maximal luminosity tune
 - Beam rms p_{\perp} at IP = 0.040 GeV/c
 - 10σ beam envelope = 0.400 GeV/c
 - Maximal acceptance tune
 - 10σ beam envelope ≈ 0.200 GeV/c
 - IP-6 Acceptance for exclusivity tag of final state proton:
 - $p_{\perp} \ge 0$ for $x_B \ge 0.1$
 - $p_{\perp} \ge (87\%)(10\sigma)$ for $x_B \ge 0.05$
 - $p_{\perp} \ge (97\%)(10\sigma)$ for $x_B \ge 0.025$
 - IP-8 with secondary focus: factor of 10 improvement vs x_B
 - $p_{\perp} \ge 0$ for $x_B \ge 0.01$
 - $p_{\perp} \ge (87\%)(10\sigma)$ for $x_B \ge 0.005$
 - $p_{\perp} \ge (97\%)(10\sigma)$ for $x_B \ge 0.0025$

Nuclear Exclusivity

- 4He *P* = 137.5 GeV per nucleon
 - Beam envelope: 10σ in $P_{\perp}(He) \approx 1.2 \text{ GeV/}c$
 - First Diffractive minimum in ⁴He \approx 0.6 GeV/c
- Veto breakup channels in all nuclei \geq ⁴He

Incoherent / Inelastic tag/veto

- Ejected nucleons, nuclear fragments, residual nuclei
- Spectator or "active" nucleons ejected in incoherent ep →epV reactions in nuclei detected in "off-momentum" detectors and ZDC.
 - Approx 20% of nucleons in nuclei have intrinsic momenta > $p_F \approx 0.27 \text{ GeV/c}$
 - In a heavy nucleus with P = 110 GeV/c, this is an emission cone > 2.7 mrad
 - Start to lose acceptance in far-forward trackers and ZDC
- Tag the residual nuclei !
 - Nuclear magnetic rigidity K = (ZP₀) A/Z. (P₀ = storage ring setting for proton)
 - Daughter nucleus $A'Z' \rightarrow K' = (ZP_0) A'/Z'$
 - ¹⁶O to ⁹⁰Zr, A-1 daughter nuclei:
 - 1%<|K-K'|/K < 7%
 - 100% tagging with secondary focus proposed for IR-8, 0% tagging in IR-6

Resolving momentum transfer to nucleus

• Must measure independent of ion beam momentum spread

Η

GPD

q

- $t = \Delta^2$
- Measure $\Delta^{\mu} = (q-q')^{\mu} = (q-p_1-p_2)^{\mu}$
- Vector Mesons
 - Charged particle decays
 - Resolution from tracking.

• Neutral channels require high-resolution EMCal

- $e^{Z}A \rightarrow e^{Z}A \gamma$
- $e^{Z}A \rightarrow e^{Z}A \omega$

A7

 p_1

 p_2

 J/ψ

AΖ

J/ Ψ , \mathbf{Y} Production

- STARLIGHT generator: $ep \rightarrow epV$
 - Cf talk for Stefan Diehl
- $\mu^+\mu^-$ channel
 - Doubles statistics;
 - Different systematics;
 - Enables DDVCS without scattered electron coherent interference
 - Cross sections grow at low-x_B Resolution in CORE

06 Dec 2022

C.Hyde

• Bin Migration strongly depends on EMCal resolution. 06 Dec 2022 C.Hyde

Coherent DVCS on light nuclei. Unfolding the Bin Migration

TOPEG event generator DELPHES FastMC

- Systematic uncertainty in reconstructed cross section estimated by varying PbWO₄ resolution event-byevent ±10%
- Error bars from uncertainty of bin-migration remain small.

Example Azimuthal Distributions: $\alpha(e, e'\lambda)\alpha$

- (10 GeV)x(137.5 GeV/u)
- $y \in [0.62, 0.90]$
- $\langle x_B \rangle \approx 0.004$
- Projected counts at 10/fb/nucleus
- Error bars are MC, (not data) statistics!
- Fits are simple Fourier, not |BH+DVCS|²

Example Azimuthal Distributions: $\alpha(e, e'\lambda)\alpha$

Conclusions

- IR-8 High-Dispersion focus in downstream ion beam line enables 100% tagging of break-up nuclei \leq A-1 up to $\frac{90}{40}Zr$
 - Tagging of ≤ A-2 daughter nuclei beyond Zr in IR-8
 - Region from ${}^{16}_{8}O$ to ${}^{90}_{40}Zr$ not accessible for A-1 in IR-6
- Muon Detection above 1 GeV/c will enhance Deep Virtual Vector Meson measurements and enable DDVCS—expecting counting rates to be sufficient at low-x
- Event generators for DVCS and DVMP for a broader range of nuclei are urgently needed.
- High Resolution EMCal in entire η <0 hemisphere is an enabling technology for precision DVCS on nuclei

Additional Slides

Comment on Diffractive Minima in Nuclear DVCS

- Sharp diffractive minima in (e,e') Form Factors
 - In heavy nuclei, these minima are smoothed out in the (e,e') cross section by Coulomb effects in the Dirac Equation (DWBA, not PWBA).
- DVCS & BH amplitudes interfere in Z(e,e'γ)Z
 - Even for light nuclei, the diffractive patterns have different minima: Charge distribution ≠ Mass distribution: q - q̄ ≠ q + q̄
 - Diffractive minima will wash out in phi-averaged cross sections.
 - Diffractive minima of both BH & DVCS amplitudes should be visible in DVCS*BH interference terms, such as electron helicity difference $\overrightarrow{d\sigma} - \overleftarrow{d\sigma}$

Particle ID Requirements (exclusive vector meson)

• π/K separation up to 6 GeV in central region covers full kinematics in high luminosity configuration.

Example Azimuthal Distributions: $\alpha(e, e'\lambda)\alpha$

- (10 GeV)x(137.5 GeV/u)
- $y \in [0.06, 0.32]$
- $\langle x_B \rangle \approx 0.012$
- Projected counts at 10/fb/nucleus
- Error bars are MC, (not data) statistics!
- Fits are simple Fourier, not |BH+DVCS|²

Muon Detection with KLM (BELLE I & II)

• Belle II full results expected soon.

Neutral Hadron detection with KLM

• *K*_{*L*}

