

IR requirements & parameters

	1 st IR		2 nd IR	
	proton	electron	proton	electron
Detector occupied region	-4.5 m +5.0 m Beam elements < 1.5° in main detector		-4.5 m +5.0 m Beam elements < 1.5° in main detector	
Polarimetry	Yes (IR4)	local	Yes (IR4)	local
2 nd focus	No		yes	
eta^* @ 275 GeV (h), 10 GeV (e)	$\beta_{x}^{*} = 80 \text{ cm}$ $\beta_{y}^{*} = 7.2 \text{ cm}$	$\beta_{x}^{*} = 45 \text{ cm}$ $\beta_{y}^{*} = 5.6 \text{ cm}$	$\beta_{x}^{*} = 80 \text{ cm}$ $\beta_{y}^{*} = 7.2 \text{ cm}$	$\beta_{x}^{*} = 45 \text{ cm}$ $\beta_{y}^{*} = 5.6 \text{ cm}$
ZDC	0.6m x 0.6m x 2m @ s≅30m n: ± 4 mrad		0.6m x 0.6m x 2m @ s \cong 40m n: \pm 4 mrad	
Roman Pots	1-5 mrad, @s≅30m		0-5 mrad, @s≅30-45m	
Scattered particle acceptance	p: 0.18 GeV/c < p _T < 1.3 GeV/c		p: 0 GeV/c < p _T < 1.3 GeV/c	
Q² tagger		Q ² < 0.1 GeV		
Crossing angle	25 mrad		35 mrad	

Requirements/Constraints

- Fit into the existing RHIC IR8 experimental hall between ARC 7 and 9.
- Preference for a secondary focus. ARC 9
- Same accelerator equipment as in IR6 (spin rotators, snake and crab cavities).
- Second colliding IR and detector not in project, but the ability to have one is in the project scope.

IR6 layout

25 mrad crossing angle

IR8 full layout (colliding)

- 35 mrad crossing angle (driven by accelerator geometry).
- Second focus point at ~47m.
- Space for similar accelerator equipment as IR6.

IR8 near IR layout

- Space available for luminosity monitor, low Q2 tagger etc...
- All ancillary detectors in outgoing hadron beam side (Forward) integrated

IR8 forward acceptance

This is the previous design of the forward region with NbTi magnets

Final focusing quads and the dipole placements was optimized for forward

scattering neutron and proton acceptance.

Neutrons ± 5 mrad Protons ± 5 mrad $x_L = 1$ Protons ± 5 mrad $x_L = 0.5$

Forward acceptance at 41GeV

Loss in acceptance without a corrector after B0

275GeV with corrector

A corrector was added between B0 and the first FFQ

Neutrons ± 5 mrad Protons ± 5 mrad $x_L = 1$ Protons ± 5 mrad $x_L = 0.5$

Geant4 simulations by Alex Jentsch: https://wiki.bnl.gov/eic-detector-2/images/8/86/IP8_HSR_lattice_performance_10_13_22_v3.pdf

41GeV with corrector

Neutrons ± 5 mrad Protons ± 5 mrad $x_L = 1$ Protons ± 5 mrad $x_L = 0.5$

IR8 second focus

Parameters at the 2nd focus

Parameter	Value	Units
eta_x	0.498	m
D_{x}	0.465	m
ϵ_{χ}	11.3	nm
σ_{δ}	$6.8e^{-4}$	-

$$x_L < 1 - 10 \frac{\sqrt{\beta_x^{2nd} \epsilon_x + D_x^2 \sigma_\delta^2}}{D}$$

- Optimal $\beta_x^{2nd} = \frac{L_{RP}}{2}$
- For the current design, $x_L < 0.9930$
- Max x_L for the given momentum spread is 0.9932 (using $x_L < 1 10\sigma_\delta$)

Space constraints

Rear side hadron crab cavity (yellow) interference on the ESR (blue).

Space constraints

Fixed by moving the IP to x=0.65m from x=0.85 which also helped clearing the forward side hadron crab cavities from the wall.

IR8 hadron optics

- Limited matching space requires some high gradient magnets (quadrupoles) than what is available from existing RHIC magnets.
- All new near IR magnets include 7 FFQs, 2 Dipoles, 1 corrector and B0.

 $\beta_{x,y}$ [km]

All magnets are assumed to be NbTi

Туре	RHIC	NEW	?
Quad	11	3	4
Dipole	5	0	1

Only showing the dipoles and quadrupoles. Other equipment such as crab cavities, spin rotators are not included here.

IR8 electron optics

Optics and design similar to IR6

Summary 2nd IR (IR8)

- Second colliding IR and detector not in project, but the ability to have one is in the project scope.
- There are many constraints for the IR8 design (particularly equipment, space and arc matching) that the 2nd IR design must satisfy.
- The IR8 with the second focus adds complementarity to IR6.
- Work to be done includes,
 - Crab cavity space requirement for the 35 mrad crossing angle.
 - Clearance check for the RCS (Rapid Cycling Synchrotron) bypass.
 - Account for luminosity sharing by moving the IP by 0.056m away from IR6.
 - Low energy lattices (41,100 for protons and 5,10 for electrons)
 - Further study needed for the feasibility of the IR magnets.
 - Nb3Sn magnets are being evaluated as an option.
 - Chromaticity compensation with two IR's in the HSR.

Thank you!