IR8 Optics Design
EICUG $2^{\text {nd }}$ detector meeting
R. G.amage

December 06, 2022

Electron-Ion Collider

IR requirements \& parameters

	$1{ }^{\text {st }} 1 \mathrm{R}$		$2^{\text {nd }} \mathbf{I R}$	
	proton	electron	proton	electron
Detector occupied region	$\begin{gathered} -4.5 \mathrm{~m}+5.0 \mathrm{~m} \\ \text { Beam elements }<1.5^{\circ} \text { in main } \\ \text { detector } \end{gathered}$		$\begin{gathered} -4.5 \mathrm{~m}+5.0 \mathrm{~m} \\ \text { Beam elements }<1.5^{\circ} \text { in main } \\ \text { detector } \end{gathered}$	
Polarimetry	Yes (IR4)	local	Yes (IR4)	local
$2^{\text {nd }}$ focus	No		yes	
$\begin{aligned} & \beta^{*} @ 275 \mathrm{GeV}(\mathrm{~h}), 10 \\ & \mathrm{GeV}(\mathrm{e}) \end{aligned}$	$\begin{aligned} & \beta^{*}=80 \mathrm{~cm} \\ & \beta^{*}=7.2 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \beta^{*}=45 \mathrm{~cm} \\ & \beta_{y}^{*}=5.6 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \beta_{x}^{*}=80 \mathrm{~cm} \\ & \beta^{*}=7.2 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \beta_{\mathrm{x}}^{*}=45 \mathrm{~cm} \\ & \beta^{*}{ }_{y}=5.6 \mathrm{~cm} \end{aligned}$
ZDC	$\begin{aligned} & 0.6 \mathrm{~m} \times 0.6 \mathrm{~m} \times 2 \mathrm{~m} @ \\ & \mathrm{~s} \cong 30 \mathrm{~m} \\ & n: \pm 4 \mathrm{mrad} \end{aligned}$		$0.6 \mathrm{~m} \times 0.6 \mathrm{mx}$ $2 \mathrm{~m} @ \mathrm{~s} \cong 40 \mathrm{~m}$ $n: \pm 4 \mathrm{mrad}$	
Roman Pots	$1-5 \mathrm{mrad}, @ \mathrm{~s} \cong 30 \mathrm{~m}$		$0-5 \mathrm{mrad}$, @ $s \cong 30-45 m$	
Scattered particle acceptance	$\begin{aligned} & \mathrm{p}: 0.18 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}< \\ & 1.3 \mathrm{GeV} / \mathrm{c} \end{aligned}$		$\begin{aligned} & \mathrm{p}: 0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}< \\ & 1.3 \mathrm{GeV} / \mathrm{c} \end{aligned}$	
Q^{2} tagger		$\mathrm{Q}^{2}<0.1 \mathrm{GeV}$		
Crossing angle	25 mrad		35 mrad	

Requirements/Constraints

- Fit into the existing RHIC IR8 experimental hall between ARC 7 and 9.
- Preference for a secondary focusis.
- Same accelerator equipment as in IR6 (spin rotators, snake and crab cavities).
- Second colliding IR and detector not in project, but the ability to have one is in the project scope.

IR6 layout

- 25 mrad crossing angle

IR8 full layout (colliding)

- 35 mrad crossing angle (driven by accelerator geometry).
- Second focus point at ${ }^{\sim} 47 \mathrm{~m}$.
- Space for similar accelerator equipment as IR6.

IR8 near IR layout

- Space available for luminosity monitor, low Q2 tagger etc..
- All ancillary detectors in outgoing hadron beam side (Forward) integrated

IR8 forward acceptance

- This is the previous design of the forward region with NbTi magnets
- Final focusing quads and the dipole placements was optimized for forward scattering neutron and proton acceptance.

Neutrons $\pm 5 \mathrm{mrad}$

Protons ± 5 mrad
$x_{L}=1$
Protons $\pm 5 \mathrm{mrad}$
$x_{L}=0.5$

Forward acceptance at 41 GeV

- Loss in acceptance without a corrector after B0

275 GeV with corrector

- A corrector was added between B0 and the first FFQ

Geant4 simulations by Alex Jentsch :
https://wiki.bnl.gov/eic-detector-2/images/8/86/IP8_HSR_lattice_performance_10_13_22_v3.pdf

41 GeV with corrector

Neutrons $\pm 5 \mathrm{mrad}$
Protons $\pm 5 \mathrm{mrad}$
$x_{L}=1$
Protons $\pm 5 \mathrm{mrad}$
$x_{L}=0.5$

ID8 Seconc focus

Parameters at the $2^{\text {nd }}$ focus

Parameter	Value	Units
β_{x}	0.498	m
D_{x}	0.465	m
ϵ_{x}	11.3	nm
σ_{δ}	$6.8 e^{-4}$	-

- Optimal $\beta_{x}^{2 n d}=\frac{L_{R P}}{2}$
- For the current design, $x_{L}<0.9930$
- $\operatorname{Max} x_{L}$ for the given momentum spread is 0.9932 (using $x_{L}<1-10 \sigma_{\delta}$)

Space constraints

Rear side hadron crab cavity (yellow) interference on the ESR (blue).

Space constraints

IR8 hadron optics

- Limited matching space requires some high gradient magnets (quadrupoles) than what is available from existing RHIC magnets.
- All new near IR magnets include 7 FFQs, 2 Dipoles, 1 corrector and BO.
- All magnets are assumed to be NbTi

Type	RHIC	NEW	$?$
Quad	11	3	4
Dipole	5	0	1

Only showing the dipoles and quadrupoles. Other equipment such as crab cavities, spin rotators are not included here.

Forward

IR8 electron optics
 - Optics and design similar to IR6

Summary $2^{\text {nd }}$ IR (IR8)

- Second colliding IR and detector not in project, but the ability to have one is in the project scope.
- There are many constraints for the IR8 design (particularly equipment, space and arc matching) that the $2^{\text {nd }} I R$ design must satisfy.
- The IR8 with the second focus adds complementarity to IR6.
- Work to be done includes,
- Crab cavity space requirement for the 35 mrad crossing angle.
- Clearance check for the RCS (Rapid Cycling Synchrotron) bypass.
- Account for luminosity sharing by moving the IP by 0.056 m away from IR6.
- Low energy lattices (41,100 for protons and 5,10 for electrons)
- Further study needed for the feasibility of the IR magnets.
- Nb3Sn magnets are being evaluated as an option.
- Chromaticity compensation with two IR's in the HSR.

Thank you!

