IR8 Optics Design

EICUG 2nd detector meeting

R. Gamage December 06, 2022

Electron-Ion Collider

Jefferson Lab

IR requirements & parameters

	1 st IR		2 nd IR		
	proton	electron	proton	electron	
Detector occupied region	-4.5 m +5. Beam elements < detecto	0 m 1.5° in main r	-4.5 m +5.0 m Beam elements < 1.5° in main detector		
Polarimetry	Yes (IR4)	local	Yes (IR4)	local	
2 nd focus	No		yes		
eta^{*} @ 275 GeV (h), 10 GeV (e)	$\beta_{x}^{*} = 80 \text{ cm}$ $\beta_{y}^{*} = 7.2 \text{ cm}$	$\beta_{x}^{*} = 45 \text{ cm}$ $\beta_{y}^{*} = 5.6 \text{ cm}$	$\beta_{x}^{*} = 80 \text{ cm}$ $\beta_{y}^{*} = 7.2 \text{ cm}$	$\beta_{x}^{*} = 45 \text{ cm}$ $\beta_{y}^{*} = 5.6 \text{ cm}$	
ZDC	0.6m x 0.6m x 2m @ s≅30m n: ± 4 mrad		0.6m x 0.6m x 2m @ s \cong 40m <i>n</i> : ± 4 mrad		
Roman Pots	1-5 mrad, @s≅30m		0-5 mrad, @s≅30-45m		
Scattered particle acceptance	p: 0.18 GeV/c < p _T < 1.3 GeV/c		p: 0 GeV/c < p _T < 1.3 GeV/c		
Q ² tagger		Q ² < 0.1 GeV			
Crossing angle	25 mrad	b	35 mrad		

annun 10

Requirements/Constraints

- Fit into the existing RHIC IR8 experimental hall between ARC 7 and 9.
- Preference for a secondary focus.
- Same accelerator equipment as in IR6 (spin rotators, snake and crab cavities).
- Second colliding IR and detector not in project, but the ability to have one is in the project scope.

IR6 layout

• 25 mrad crossing angle

4

IR8 full layout (colliding)

- 35 mrad crossing angle (driven by accelerator geometry).
- Second focus point at ~47m.
- Space for similar accelerator equipment as IR6.

Liectron-Ion Collider

2000000

IR8 near IR layout

- Space available for luminosity monitor, low Q2 tagger etc..
- All ancillary detectors in outgoing hadron beam side (Forward) integrated

IR8 forward acceptance

- This is the previous design of the forward region with NbTi magnets
- Final focusing quads and the dipole placements was optimized for forward scattering neutron and proton acceptance.

Neutrons $\pm 5 \text{ mrad}$ Protons $\pm 5 \text{ mrad}$ $x_L = 1$ Protons $\pm 5 \text{ mrad}$ $x_L = 0.5$

Forward acceptance at 41GeV

• Loss in acceptance without a corrector after B0

275GeV with corrector

• A corrector was added between B0 and the first FFQ

Neutrons $\pm 5 \text{ mrad}$ Protons $\pm 5 \text{ mrad}$ $x_L = 1$ Protons $\pm 5 \text{ mrad}$ $x_L = 0.5$

Geant4 simulations by Alex Jentsch : https://wiki.bnl.gov/eic-detector-2/images/8/86/IP8_HSR_lattice_performance_10_13_22_v3.pdf

41GeV with corrector

Neutrons ±5 mrad Protons $\pm 5 \text{ mrad}$ Protons ±5 mrad

IR8 second focus

Parameters at the 2nd focus

Parameter	Value	Units
β_x	0.498	m
D_{x}	0.465	m
ϵ_{χ}	11.3	nm
σ_δ	$6.8e^{-4}$	-

 $x_L < 1 - 10 \frac{\sqrt{\beta_x^{2nd} \epsilon_x + D_x^2 \sigma_\delta^2}}{2}$

- Optimal $\beta_x^{2nd} = \frac{L_{RP}}{2}$
- For the current design, $x_L < 0.9930$
- Max x_L for the given momentum spread is 0.9932 (using $x_L < 1 10\sigma_{\delta}$)

Space constraints

Rear side hadron crab cavity (yellow) interference on the ESR (blue).

Space constraints

Fixed by moving the IP to x=0.65m from x=0.85 which also helped clearing the forward side hadron crab cavities from the wall.

IR8 hadron optics

- Limited matching space requires some high gradient magnets (quadrupoles) than what is available from existing RHIC magnets.
- All new near IR magnets include 7 FFQs, 2 Dipoles, 1 corrector and BO.
- All magnets are assumed to be NbTi

				1 1			
Туре	RHIC	NEW	?	1			P 1 and source
Quad	11	3	4	[km]			
Dipole	5	0	1	β ^{x,λ}	,	 	
					~		

0

-150

-100

Rear

-50

0

s [m]

Only showing the dipoles and quadrupoles. Other equipment such as crab cavities, spin rotators are not included here.

100

Forward

50

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

-3.5

150

D_x [m]

IR8 electron optics

• Optics and design similar to IR6

Summary 2nd IR (IR8)

- Second colliding IR and detector not in project, but the ability to have one is in the project scope.
- There are many constraints for the IR8 design (particularly equipment, space and arc matching) that the 2nd IR design must satisfy.
- The IR8 with the second focus adds complementarity to IR6.
- Work to be done includes,
 - Crab cavity space requirement for the 35 mrad crossing angle.
 - Clearance check for the RCS (Rapid Cycling Synchrotron) bypass.
 - Account for luminosity sharing by moving the IP by 0.056m away from IR6.
 - Low energy lattices (41,100 for protons and 5,10 for electrons)
 - Further study needed for the feasibility of the IR magnets.
 - Nb3Sn magnets are being evaluated as an option.
 - Chromaticity compensation with two IR's in the HSR.

Thank you!

