Inclusive physics at the EIC: opportunities and requirements

Barak Schmookler

Inclusive scattering at the EIC

Measurement	Physics Topic/goal
$\sigma_{red,NC(CC)}(x,Q^2) \rightarrow F_2, F_L$	Proton PDFs q(x,Q ²) , g(x, Q ²)
$\sigma_{red,NC(CC)}(x,Q^2) \rightarrow F_2, F_L$	Nuclear PDFs q(x,Q ²) , g(x, Q ²) Non-linear QCD dynamics
Inclusive $A_{ } / A_{\perp}$ for proton, deuterium, ³ He	Gluon & Quark Helicity Δg(x,Q²), Δu⁺, Δd⁺
Inclusive A _{PV}	Strange Pol and Unpolarized Δs ⁺ (x,Q ²), s ⁺ (x,Q ²) BSM & Precision EW (sin ² θ _w)

Inclusive scattering at the EIC

Measurement	Physics Topic/goal
$\sigma_{red,NC(CC)}(x,Q^2) \rightarrow F_2, F_L$	Proton PDFs q(x,Q ²) , g(x, Q ²)
$\sigma_{red,NC(CC)}(x,Q^2) \rightarrow F_2, F_L$	Nuclear PDFs q(x,Q ²) , g(x, Q ²) Non-linear QCD dynamics
Inclusive $A_{ }$ / A_{\perp} for proton, deuterium, ³ He	Gluon & Quark Helicity Δg(x,Q²), Δu⁺, Δd⁺
Inclusive A _{PV}	Strange Pol and Unpolarized Δs ⁺ (x,Q ²), s ⁺ (x,Q ²) BSM & Precision EW (sin ² θ _w)

Polarized PDFs and the Spin of the Proton

portion of the proton's spin

gluon PDF

DSSV14

and 68% C.L. contours

NNPDFpol1.1 and 1-0 contours

0.3 0.5

MC-replicas MC-average

Experimental channels for studying Polarized PDFs

Inclusive and semi-inclusive lepton-proton (light nucleus) scattering, with longitudinally polarized proton (or light nucleus)

Hard proton-proton scattering with longitudinally polarized proton beams

$$p + p \rightarrow \pi + X$$

$$g + g \rightarrow g + g$$

NC e-p cross section with Longitudinally Polarized Protons

At high Q², for electron-proton scattering:

$$\Delta \sigma = \frac{d^2 \sigma}{dx dQ^2} (\lambda_n = -1, \lambda_l) - \frac{d^2 \sigma}{dx dQ^2} (\lambda_n = +1, \lambda_l) = \frac{4\pi \alpha^2}{Q^4 x} \left[-Y_+ g_4 + Y_- 2xg_1 + y^2 g_L \right]$$

$$g_1 = -\lambda_l g_1^{\gamma} + \eta_z (\lambda_l g_v^e - g_A^e) g_1^{\gamma z} + \eta_z^2 \left[-\lambda_l \left((g_v^e)^2 + (g_A^e)^2 \right) + 2g_A^e g_v^e \right] g_1^z$$

$$g_{4,5} = \eta_z (g_v^e - \lambda_l g_A^e) g_{4,5}^{\gamma z} + \eta_z^2 \left[-(g_v^e)^2 - (g_A^e)^2 + 2\lambda_l g_A^e g_v^e \right] g_{4,5}^z$$

$$f_{\pm} = 1 \pm (1 - y)^2$$

$$g_{L} = g_4 - 2xg_5$$

Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

e spin

Target spin

NC e-p cross section with Longitudinally Polarized Protons

$$\Delta \sigma = \frac{d^2 \sigma}{dx dQ^2} \left(\lambda_n = -1, \lambda_l\right) - \frac{d^2 \sigma}{dx dQ^2} \left(\lambda_n = +1, \lambda_l\right) = \frac{4\pi \alpha^2}{Q^4 x} \left[-Y_+ g_4 + Y_- 2xg_1 + y^2 g_L\right]$$

$$g_1 = -\lambda g_1^{\gamma} + \eta_z \left(\lambda_l g_v^e - g_A^e\right) g_1^{\gamma z} + \eta_z^2 \left[-\lambda_l \left((g_v^e)^2 + (g_A^e)^2\right) + 2g_A^e g_v^e\right] g_1^z$$

For non-zero electron beam polarization, this term dominates

$$g_{4,5} = \eta_z \left(g_v^e - \lambda_l g_A^e \right) g_{4,5}^{\gamma z} + \eta_z^2 \left[- \left(g_v^e \right)^2 - \left(g_A^e \right)^2 + 2\lambda_l g_A^e g_v^e \right] g_{4,5}^z$$

$$Y_{\pm} = 1 \pm (1 - y)^2$$
$$g_L = g_4 - 2xg_5$$

Measuring the g₁ structure function

At high Q², for an electron with λ =-1:

$$\Delta \sigma \approx \frac{4\pi\alpha^2}{Q^4 x} \left(Y_- 2x g_1^\gamma \right)$$

$$A_{||} = \frac{\sigma\left(\lambda_n = -1, \lambda_l = -1\right) - \sigma\left(\lambda_n = +1, \lambda_l = -1\right)}{\sigma\left(\lambda_n = -1, \lambda_l = -1\right) + \sigma\left(\lambda_n = +1, \lambda_l = -1\right)} \approx \frac{Y_-}{Y_+} A_1$$

Depolarization factor

$$A_{\gamma*p} = A_1 = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{g_1^{\gamma}}{F_1^{\gamma}}$$

Dec 6th, 2022

Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Extraction of polarized PDFs from g₁

$$g_{1}^{\gamma}\left(x,Q^{2}\right) = \sum_{i=q,g} C_{i} \otimes \Delta f_{i}$$
$$= \frac{1}{2} \sum_{q} e_{q}^{2} \left[\Delta q\left(x,Q^{2}\right) + \Delta \bar{q}\left(x,Q^{2}\right)\right] \quad \text{at LO}$$

 $\frac{\partial \Delta f_{i=q,g}}{\partial \ln Q^2} = \sum_j P_{i,j} \otimes \Delta f_j$

DGLAP evolution

Need measurements at a wide variety of x values and scales (Q² values) to constrain the polarized quark and gluon PDFs

Dec 6th, 2022 Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

EIC kinematic coverage

e-beam E	p-beam E	\sqrt{s} (GeV)	inte. Lumi. (fb $^{-1}$)
18	275	140	15.4
10	275	105	100.0
10	100	63	79.0
5	100	45	61.0
5	41	29	4.4

- Different center-of-mass energies allow coverage in different x,Q² ranges.
- Standard binning of 5 bins per decade in both x and Q². Kinematic coverage considered is Q² > 1 GeV², 0.01 < y < 0.95.

Statistical and systematic uncertainties

 $|A_{LL}^{p}|$

The systematic uncertainty estimation includes 1.5% point-by-point uncorrelated systematic uncertainty, 5% normalization uncertainty, and an additional systematic (shift) uncertainty of 10⁻⁴ from relative luminosity. The conservative 5% normalization uncertainty includes contributions from electron beam polarization (2%), proton polarization (2%), uncertainty related with pion contamination (3%, assuming 90% electron purity), and 1-2% on detector effects.

Statistical and systematic uncertainties

 $|A_{LL}^{p}|$

2

EIC kinematic coverage extends down to x of 10^{-4} for Q² > 1 GeV² ...but statistical error begins to approach 100% of the asymmetry for x < 10^{-3} .

This assumes ~15 fb⁻¹ integrated luminosity and 70-80% electron and proton polarization. Many years of running with high instantaneous luminosity can help.

Expected EIC experimental precision

Expected EIC experimental precision

Impact of the EIC on polarized PDFs: DSSV

Very significant impact on polarized gluon and quark singlet PDFs using inclusive e-p only!

15

Impact of the EIC on polarized PDFs: DSSV

Very significant impact on polarized gluon and quark singlet PDFs using inclusive e-p only!

16

Detector requirements and associated challenges

Detector requirements from EIC Yellow report

	n Nomenclature		Tracking			Electrons and Photons			π/K/p PID		HCAL		Muone		
η		Nomen	ciature	Min p⊤	Resolution	Allowed X/X ₀	Si-Vertex	Min E	Resolutio n σ _E /E	PID	p-Range (GeV/c)	Separation	Min E	$\begin{array}{c} \text{Resolution} \\ \sigma_{\text{E}}/\text{E} \end{array}$	MUONS
-6.9 — -5.8			low-Q ² tagger		δθ/θ < 1.5%; 10 ⁻⁶ < Q ² < 10 ⁻² GeV ²										
	⊥ p/A	Auxiliary													
-4.5 — -4.0	· ·	Detectors	Instrumentation to												
-4.0 3.5			particles from γ											~50%/√E+6%	
-3.53.0									2%/√E+ (1-3)%						
-3.0 — -2.5					σ _p /p ~ 0.1%×p+2.0%		σ _{xy} ~30µm/p⊤+ 40µm								
-2.52.0			Backwards Detectors											~45%/√E+6%	
-2.0 — -1.5					$\sigma_{\rm p}/p \thicksim 0.05\% \times p{+}1.0\%$		σ _{xy} ~30µm/p⊤+ 20um		7%/√E+	-	≤7 GeV/c				
-1.5 — -1.0									(1-3)%	suppression					
-1.0 — -0.5						1				up to 1:104					
-0.5 - 0.0		Central	Devel	100 Me∨ π		~5% or	$\sigma_{xyz} \sim 20 \ \mu m$,	50					~500	050/1/5.70/	
0.0 — 0.5		Detector	Barrei		σ _p /p ~ 0.05% ×p+0.5%	less	d₀(z) ~ d₀(rφ) ~ 20/p⊤GeV	MeV			≤ 10 GeV/c	2.30	MeV	~85%/VE+7%	bkg,
0.5 — 1.0				135 MeV K			μm + 5 μm				≤ 15 GeV/c				improve resolution
1.0 — 1.5						1			(10-12)%/		≤ 30 GeV/c				
1.5 — 2.0					$\sigma_p/p \sim 0.05\% \times p+1.0\%$		σ _{xy} ~30μm/p⊤+		VE+(1-3)%						
2.0 - 2.5			Forward Detectors				20µm			3σ e/π	≤ 50 GeV/c			~35%/√E	
2.5 — 3.0						1	σ _{xy} ~30µm/p⊤+ 40µm				≤ 30 GeV/c				
3.0 — 3.5					σ _p /p ~ 0.1%×p+2.0%		σ _{xy} ~30µm/p⊤+ 60µm				≤ 45 GeV/c				
3.5 — 4.0			Instrumentation to												
4.0 - 4.5			particles from γ												
	↑e	Auxiliary Detectors													
> 6.2			Proton		σ _{intrinsic} (<i>t</i>)/ t < 1%; Acceptance:										
			Spectrometer		0.2< p⊤ <1.2 GeV/c										

Detector requirements and associated challenges

- Hermetic coverage for scattered electron leave no gaps in EMcal coverage while also incorporating PID readout
- Scattered electron momentum resolution in backward direction – design trackers to optimize momentum resolution when the particle has a large component parallel to the solenoid field; use combined information from tracker and EMcal for reconstruction
- Scattered electron purity in the backwards direction and barrel – high-precision EMcals and additional detectors for low momentum
- Remove large ISR events and reduce photoproduction background – good measurement of total E-p_z of all particles.
- Forward detection want good energy resolution for hadronic reconstruction methods at low y

	η Nomenclature		Nomenclature			Electrons and Photons		π/K/p PID		HCAL		Muons			
<u>п</u>			Min p⊤	Resolution	Allowed X/X ₀	Si-Vertex	Min E	Resolutio n σ _E /E	PID	p-Range (GeV/c)	Separation	Min E	Resolution σ _E /E	Muons	
-6.9 — -5.8			low-Q ² tagger		δθ/θ < 1.5%; 10 ⁻⁶ < Q ² < 10 ⁻² GeV ²										
	D/A	Auxiliary													
-4.54.0		Detectors	Instrumentation to												
-4.0 3.5			particles from γ											~50%/√E+6%	
-3.53.0					- / 0.1% x=+2.0%				2%/VE+ (1-3)%						
-3.02.5					0p/p ~ 0.1% p+2.0%		σ _{xy} ~30μm/p⊤+ 40μm								
-2.52.0			Backwards Detectors											~45%/√E+6%	
-2.0 — -1.5					$\sigma_p/p \sim 0.05\% \times p+1.0\%$		σ _{xy} ~30µm/p _T + 20µm		7%/√E+ (1-3)%	π	≤7 GeV/c				
-1.5 — -1.0										suppression					
-1.00.5										up to 1:10*					
-0.5 - 0.0		Central	Porrel	100 Me∨π	a ha - 0.05% xm+0.5%	~5% or	$\sigma_{xyz} \sim 20 \ \mu m$,	50				>2~	~500	950/ /JE+ 70/	Lineful for
0.0 — 0.5		Detector	Darrer	105 M MK	op/p ~ 0.05% ×p+0.5%	less	α₀(z) ~ α₀(rφ) ~ 20/p⊤GeV	MeV			≤ 10 GeV/c	2.30	MeV	~03 %/ VE+ / %	bkg,
0.5 — 1.0			13	135 MeV K			μm + 5 μm	n		≤ 15 GeV/c	2			resolution	
1.0 — 1.5									(10-12)%/		≤ 30 GeV/c				
1.5 — 2.0					$\sigma_p/p \sim 0.05\% \times p+1.0\%$		σ _{xy} ~30µm/p⊤+		1-3)70						
2.0 - 2.5			Forward Detectors				20µm			3σ e/π	≤ 50 GeV/c			~35%/√E	
2.5 — 3.0					$\sigma / n \sim 0.1\% x n + 2.0\%$		σ _{xy} ~30μm/p⊤+ 40μm				≤ 30 GeV/c				
3.0 - 3.5					0p/p ~ 0.176×p+2.076		σ _{xy} ~30µm/p⊤+ 60µm				≤ 45 GeV/c				
3.5 - 4.0			Instrumentation to separate charged												
4.0 - 4.5		Auntilia	particles from γ												
	↑e	Detectors													
> 6.2			Proton		σ _{intrinsic} (<i>t</i>)/ t < 1%; Acceptance:										
			Spectrometer		0.2< p⊤ <1.2 GeV/c										

Detector requirements from EIC Yellow report

Scattered Electron Acceptance

• For the beam energies that will be used at the EIC and considering scattered electrons in the pseudo-rapidity range of $-4 < \eta < 4$ (where $Q^2 \gg m_e^2$), we can relate the inclusive kinematic variables to the scattered electron angles and energies as

$$y_e = 1 - \frac{E'_e}{2E_e} (1 - \cos \theta_e) ,$$

$$Q_e^2 = 4E_e E'_e \cos^2(\theta_e/2) ,$$

$$x_e = \frac{Q_e^2}{sy_e} .$$

 Note how neither Q² nor y depend explicitly on the proton beam energy.

Electron Angular Acceptance

- For many EIC physics processes which have a requirement that Q² > 1 GeV², an angular acceptance of η ≥ -3.6 will allow full coverage at the highest EIC beam energy setting. At lower energies, this same acceptance coverage would allow access to lower values of Q² (see next slide).
- Any processes which require Q² < 1 GeV² at the highest energy setting will need an extended acceptance below η ≈ −3.6.
- For inclusive physics, coverage below Q² = 1 GeV² has strong motivations: to study the perturbative to nonperturbative transition; to give access to lowest possible x, which is well-aligned with the central EIC physics aims to study mass generation and dense systems of gluons; and to minimize the 'gap' in Q² coverage between the central detector and the farbackwards low-Q² tagger.

Electron Angular Acceptance

Electron Minimum momentum (energy)

- For a fixed electron beam energy and scattered electron angle, Q² increases as the energy of the scattered electron increases, while y decreases.
- For all physics analyses, a cut of y < 0.95 will be applied. The minimum energy is also affected by the minimum Q² which needs to be measured. These two requirements place a minimum-energy threshold on the scattered electron energy, above which full acceptance is needed.

Electron Minimum momentum (energy)

- Consider the case where the physics requires Q² > 1 GeV². The plot on the right shows as a function of η the minimum electron energy that satisfies both the Q² > 1 GeV² requirement and the y < 0.95 requirement.</p>
- > There are a few important features of this plot:
 - 1. The curves do not extend to the lowest possible values of pseudorapidities. This is because at the most negative values of η , the scattered electron can not be created at $Q^2 = 1 \text{ GeV}^2$, only at lower values of Q^2 .
 - 2. Starting at the most negative η value that is allowed, each minimum energy curve decreases towards more positive values of η . For this left part of the curve, the minimum energy is exactly at the Q² = 1 GeV² limit (while still satisfying the y < 0.95 requirement).
 - 3. Moving towards more positive values of η , each minimum energy curve reaches a global minimum value and then begins to grow. Once the curve begins to increase towards more positive values of η , the minimum energy of the scattered electron is at the y = 0.95 limit (while still satisfying the Q² > 1 GeV² requirement).

Scattered electron energy in backwards direction is quite large unless at very low Q²

scattered electron energy and x_B

- For Q² = 1 GeV², the scattered electron energy is at almost a fixed energy for a large range of x. Reconstruction of x using the scattered electron is impossible here.
- Note how more central rapidities correspond to lower x at a fixed Q².

Dec 6th, 2022

Electrons at low Q² in the main detector

- By applying the y < 0.95 requirement only, we can consider the minimum possible scattered electron energy that would need to be measured. This is shown in the top panel of the right plot.
- The bottom panel then shows the Q² that is measured at that scattered electron energy. Note that since this minimum Q² is at the y = 0.95 limit, the measurement will be also be at the lowest x accessible.
- For example, in the case of a 5 GeV electron beam, being able to identify and reconstruct 250 MeV electrons at η = -4 would allow measurements down to Q² ≈ 10⁻³.

Beam divergence effects at low Q²

5x41 GeV IP6 high-divergence setting

Electrons at very high Q²

Electron purity

-3.5 < η < -2.0

 $-1.0 < \eta < 0.0$

Electron purity

Importance of total E-p_z cut for reducing radiative correction Sum over final-state particles w/ $-4 < \eta < 4$

- Channel 1: No radiation Born term, virtual corrections, and integration of soft photon radiation
- ➤ Channel 6 ISR radiation
- Channel 7 FSR radiation
- Channel 8 ISR radiation at low Q² (sometimes referred to as Compton)

If all particles are detected, the total $E-p_z$ will be twice the electron beam energy (20 GeV here).

Importance of total E-p_z cut for reducing radiative correction

- The radiative correction at low x and low Q² can be very large and 'positive' when reconstructing using the scattered electron. It can also be large and 'negative' at higher x (low y), but here methods other than the scattered electron method are generally relied upon.
- Limiting the size of the correction is necessary for high precision measurements.
- A cut on the total E-p_z can reduce the correction factor significantly.
- Of course, we should not cut into the main peak of the total E-p_z distribution, only in the tail. So, the resolution on the total E-pz distribution is a very important consideration for EIC measurements.

Inclusive PWG for EPIC (Detector 1)

Conveners:

- Claire Gwenlan (claire.gwenlan@physics.ox.ac.uk)
- Tyler Kutz (tkutz@mit.edu)
- Paul Newman (paul.newman@cern.ch)
- Barak Schmookler (baraks@ucr.edu)

➤ Meetings: (INDICO) Mondays @ 12:00pm Eastern Time

Summary

- Key inclusive measurements are the unpolarized nuclear cross section and double-spin asymmetry.
- ➤These measurements will benefit from the high luminosity, the adjustable center-of-mass energy, and the variety of beam ions available at the EIC.
- ➢ For NC inclusive measurements, identification and reconstruction of the scattered electron is most important. (For CC measurements, the hadronic final state will be used.)
- Keeping pion contamination and radiative corrections small will require very good total E-p_z reconstruction.

BACKUP

DSSV14

Depolarization factor

Where in the detector does most of the total E-p_z go?

Sum over final-state particles

Sum over final-state particles

Distribution of the total $E-p_z$ in the detector depends strongly on the scattered electron kinematics.

Fast simulation detector parameterization

η range	Tracker	EmCal	HCal		
	$\sigma_p/p[\%]$	$\sigma_E/E~[\%]$	$\sigma_E/E[\%]$	$\sigma_{\theta} [\text{Rad}]$	σ_{ϕ} [Rad]
-4.02.0	$0.1 \cdot p \bigoplus 0.5$	$2/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
-2.01.0	$0.05 \cdot p \bigoplus 0.5$	$7/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
-1.0 - +1.0	$0.05 \cdot p \bigoplus 0.5$	$12/\sqrt{E} \bigoplus 1.0$	$85/\sqrt{E} \bigoplus 7.0$	$0.01/\left(p\cdot\sqrt{\sin heta} ight)$	0.01
+1.0 - +2.5	$0.05 \cdot p \bigoplus 1.0$	$12/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
+2.5 - +4.0	$0.1 \cdot p \bigoplus 2.0$	$12/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
+1.0 - +2.5 +2.5 - +4.0	$0.05 \cdot p \bigoplus 1.0$ $0.1 \cdot p \bigoplus 2.0$	$\frac{12}{\sqrt{E}} \bigoplus 1.0$ $\frac{12}{\sqrt{E}} \bigoplus 1.0$	$\frac{50/\sqrt{E}}{50/\sqrt{E}}$		

The above is based on the EIC Yellow Report detector matrix, with a few modifications:

- 1. Extend acceptance from [-3.5,3.5] to [-4,4]
- 2. Added non-zero angular resolutions (important for realistic scattered electron Q² resolution)
- 3. Added a barrel HCal (based on CMS detector, I think)
- 4. Added 1% constant terms to all the EmCal resolutions
- 5. For all particles (both charged and neutral, added a minimum P_t acceptance of $P_t > 0.25$ GeV/c.

Fast simulation for reconstruction of total E-p_z

	Tracker	EmCal	HCal		
η range	σ_p/p [%]	$\sigma_E/E[\%]$	$\sigma_E/E[\%]$	σ_{θ} [Rad]	σ_{ϕ} [Rad]
-4.02.0	$0.1 \cdot p \bigoplus 0.5$	$2/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$,
-2.01.0	$0.05 \cdot p \bigoplus 0.5$	$7/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
-1.0 - +1.0	$0.05 \cdot p \bigoplus 0.5$	$12/\sqrt{E} \bigoplus 1.0$	$85/\sqrt{E} \bigoplus 7.0$	$0.01/\left(p\cdot\sqrt{\sin heta} ight)$	0.01
+1.0 - +2.5	$0.05 \cdot p \bigoplus 1.0$	$12/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
+2.5 - +4.0	$0.1 \cdot p \bigoplus 2.0$	$12/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		

Charged particles Photons Neutral hadrons General comments:

- 1. We only study events where the scattered electron is reconstructed.
- 2. We use the tracker to reconstruct the momentum (energy) of the scattered electron for this study.
- 3. When the radiated photon is within the detector acceptance, we assume it is separated from the scattered electron and can be treated as any other photon.
- 4. As mentioned above, for all particles, we use a minimum P_t acceptance of $P_t > 0.25$ GeV/c.

Fast simulation for reconstruction of total E-p_z

n rango	Tracker	EmCal	HCal		
η range	$\sigma_p/p[\%]$	$\sigma_E/E[\%]$	$\sigma_E/E[\%]$	σ_{θ} [Rad]	σ_{ϕ} [Rad]
-4.02.0	$0.1 \cdot p \bigoplus 0.5$	$2/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
-2.01.0	$0.05 \cdot p \bigoplus 0.5$	$7/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
-1.0 - +1.0	$0.05 \cdot p \bigoplus 0.5$	$12/\sqrt{E} \bigoplus 1.0$	$85/\sqrt{E} \bigoplus 7.0$	$0.01/\left(p\cdot\sqrt{\sin heta} ight)$	0.01
+1.0 - +2.5	$0.05 \cdot p \bigoplus 1.0$	$12/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		
+2.5 - +4.0	$0.1 \cdot p \bigoplus 2.0$	$12/\sqrt{E} \bigoplus 1.0$	$50/\sqrt{E}$		

Charged particles Photons Neutral hadrons We studied three different detector settings within the above detector configuration:

- 1. Perfect PID for all reconstructed particles.
- 2. No hadronic PID: for charged particles other than electrons and positrons, reconstruct particle using charged pion mass; for neutral hadrons, reconstruct using zero mass.
- 3. No hadronic PID and no backwards HCal: same as setting 2, with HCal from -4 < eta < -1 removed.

Reconstruction results – QED radiation ON

Perfect PID Sum over final-state particles w/ $-4 < \eta < 4$ 10⁵ 10 GeV e on 100 GeV p 10GeV e on 100GeV p 10⁵ - Channel 1 Djangoh 4.6.20: QED Radiation ON - Channel 6 Events w/ reconstructed Scat. Elec. True (not reconstructed) 10⁴ Channel 7 10^{4} total E-p_z shown here - Channel 8 10³ 10³ 10² 10² See smeared 10 peak at 0 GeV. 10 20 10 15 25 5 -5 10 15 20 -105 Total E-p [GeV] Reconstructed Total E-P, [GeV]

Reconstruction results – all

No QED effects included

QED effects turned ON

