UNCERTAINTY QUANTIFICATION IN DEEP LEARNING

TOWARDS DETECTOR PHYSICS

CONTENT

Call for controlled research into UQ for our purposes

- Epistemic, aleatoric
- Deeply Uncertain

Methods

- Bayesian Neural Networks, Implicit Quantile Networks,

Normalizing Flows, Generative Adversarial Networks

Examples from particle physics

- jet simulation, likelihood inference

Epistemic:

- model uncertainty
- reducible

Aleatoric:

- uncertainty in data
- irreducible
- statistical
- systematic

MACHINE
 LEARNING
 Science and Technology

Paper

Deeply uncertain: comparing methods of uncertainty quantification in deep learning algorithms

João Caldeira ${ }^{1}$ © and Brian Nord ${ }^{1,2,3}$

${ }^{1}$ Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, United States of America
2 Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, United States of America
3 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, United States of America
E-mail: caldeira@fnal.gov
Keywords: uncertainty quantification, neural networks, Bayesian inference, ensemble of neural networks

- Aleatoric statistical uncertainty can be included by adding noise in the 10 measurements of the period, T. For each data point in the training set, we draw the amount of measurement noise ν uniformly in some range, and then draw each measurement of the period from a normal distribution with standard deviation νT. The choice of the range for ν in the training set merits a longer discussion in section 3 .
- Aleatoric systematic uncertainty exists if the single measurement of L also contains noise, as this is a source of uncertainty that cannot be statistically determined from the single measurement of L. Note that since there is no statistical way to determine this noise from the input data alone, the uncertainty must be determined from the typical noise seen in training. In our training and test sets, all measurements of L are drawn from a normal distribution with standard deviation 0.02 L .
- Epistemic systematic uncertainty reflects how uncertain the model is of its predictions. One way to test this is by looking at predictions far from the training set manifold. In this experiment, we train networks with $g \in(5,15) \mathrm{m} / \mathrm{s}^{2}$, and $L \in(0.2,0.8) \mathrm{m}$. Either of these can be moved outside that range, and we will consider both cases below.

$$
\begin{aligned}
\hat{g} & =\frac{1}{N} \sum_{i=1}^{N} \mu_{i}=\operatorname{mean}\left(\mu_{i}\right) \\
\sigma_{a l} & =\sqrt{\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{2}}=\sqrt{\operatorname{mean}\left(\sigma_{i}^{2}\right)} \\
\sigma_{e p} & =\sqrt{\frac{1}{N} \sum_{i=1}^{N} \mu_{i}^{2}-\hat{g}^{2}}=\operatorname{stdev}\left(\mu_{i}\right) \\
\sigma_{p r} & =\sqrt{\sigma_{a l}^{2}+\sigma_{e p}^{2}}
\end{aligned}
$$

(gravitational constant mean)
(aleatoric uncertainty)
(epistemic uncertainty)

Trained with T noise of 1-5\%

MACHINE

LEARNING

PAPER

Deeply uncertain: comparing methods of uncertainty quantification in deep learning algorithms

João Caldeira ${ }^{-}$and Brian Nord ${ }^{2,2,3}$
${ }^{1}$ Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 , United States of America 2 Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, United States of America
${ }^{\text {Kavl }}$ Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 , United States of America ${ }^{3}$ Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, United States of America E-mail: caldeira@fnal.gov

Trained with T noise of 1-10\%

CONSIDERATIONS:

- LOSS FUNCTIONS
- TRAINING APPROACH / METHODS

Loss functions

$-\frac{1}{N} \sum_{i=1}^{N}(\hat{y}-y)^{2}$: mean
$-\frac{1}{N} \sum_{i=1}^{i=1}|\hat{\bar{N}}-y|:$ median

- $-\log p(y \mid \theta)$: maximum likelihood estimation
- $\mathcal{L}(f, x, y, \tau)=\left\{\begin{array}{ll}\tau(y-f(x, \tau)) & y \geq f(x, \tau) \\ (\tau-1)(y-f(x, \tau)) & y<f(x, \tau)\end{array}:\right.$ quantile function

FAST MAPPING FROM THEORY TO OBSERVABLES

Bayesian Neural Networks

$\log p(y \mid \theta)$

Training - Bayesian inference

Can we make predictions with useful epistemic uncertainty estimates?
$p(y \mid x, D)=\int \delta(y-f(x, \theta)) p(\theta \mid D) d \theta$.

FAST MAPPING FROM THEORY TO OBSERVABLES

Bayesian Neural Networks

Training - Bayesian inference

Can we make predictions with useful epistemic uncertainty estimates?

FAST MAPPING FROM THEORY TO OBSERVABLES

JET SIMULATION AND CORRECTION

jet simulation

NEED FOR DISTRIBUTION PREDICTIONS

jet simulation

JET SIMULATION AND CORRECTION

J. BLUE, ET.AL., CHEP '21

EPJ WOC 251, 03055 (2021) HTTPS://DOI.ORG/10.1051/EPJCONF/202125103055

jet simulation

EXISTING METHODS

(conditional) generative adversarial networks

$$
\begin{aligned}
& \text { arXiv:1912.00477 } \\
& \text { arXiv:1807.01954 } \\
& \text { arXiv:1805.00850 } \\
& \text { arXiv:1712.10321 }
\end{aligned}
$$

normalizing flows

$$
\begin{aligned}
& \operatorname{arXiv}: 1904.12072 \\
& \text { arXiv:2001.05486 } \\
& \text { arXiv:2001.10028 } \\
& \text { arXiv:2012.09873 } \\
& \text { arXiv:2106.05285 }
\end{aligned}
$$

EXISTING METHODS

(conditional) generative adversarial networks

How to GAN away Detector Effects

Marco Bellagente ${ }^{1}$, Anja Butter ${ }^{1}$, Gregor Kasieczka ${ }^{2}$, Tilman Plehn ${ }^{1}$, and Ramon Winterhalder ${ }^{1}$

1 Institut für Theoretische Physik, Universität Heidelberg, Germany
2 Institut für Experimentalphysik, Universität Hamburg, Germany bellagente@thphys.uni-heidelberg.de

Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network

Martin Erdmann ${ }^{a}$ Jonas Glombitza a Thorben Quast ${ }^{a, b}$
${ }^{\text {a }}$ III. Physikalisches Institut A, Rheinisch Westälische Technische Hochschule,
Aachen, Germany
EP-LCD, CERN,
Geneva, Switzerland

Fast and accurate simulation of particle detectors using generative adversarial networks

[^0]CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks

[^1]
Flow-based generative models for Markov chain Monte Carlo in lattice field theory

> M. S. Albergo, ${ }^{1,2,3}$ G. Kanwar, ${ }^{4}$ and P. E. Shanahan ${ }^{4,1}$
> ${ }^{1}$ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada ${ }^{2}$ Cavendish Laboratories, University of Cambridge, Cambridge CB3 0HE, U.K. ${ }^{3}$ University of Waterloo, Waterloo, Ontario N2L 3G1, Canada ${ }^{4}$ Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
i-flow: High-dimensional Integration and Sampling with Normalizing Flows

Christina Gao ${ }^{1}$, Joshua Isaacson 1, and Claudius Krause ${ }^{1}$
${ }^{1}$ Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA

Event Generation with Normalizing Flows

Christina Gao, ${ }^{1}$ Stefan Höche, ${ }^{1}$ Joshua Isaacson, ${ }^{1}$ Claudius Krause, ${ }^{1}$ and Holger Schulz ${ }^{2}$
${ }^{1}$ Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA
${ }^{2}$ Department of Physics, University of Cincinnati, Cincinnati, OH 45219, USA

Measuring QCD Splittings with Invertible Networks

Sebastian Bieringer ${ }^{1}$, Anja Butter ${ }^{1}$, Theo Heimel ${ }^{1}$, Stefan Höche ${ }^{2}$, Ullrich Köthe ${ }^{3}$, Tilman Plehn ${ }^{1}$, and Stefan T. Radev ${ }^{4}$

1 Institut für Theoretische Physik, Universität Heidelberg, Germany 2 Fermi National Accelerator Laboratory, Batavia, IL, USA 3 Heidelberg Collaboratory for Image Processing, Universität Heidelberg, Germany 4 Psychologisches Institut, Universität Heidelberg, Germany heimel@thphys.uni-heidelberg.de

CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows

Claudius Krause and David Shih

NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
E-mail: Claudius.Krause@rutgers.edu, shih@physics.rutgers.edu

normalizing flows

arXiv:1904.12072
arXiv:2001.05486
arXiv:2001.10028
arXiv:2012.09873
arXiv:2106.05285

IMPLICIT QUANTILE NETWORKS STATS REVIEW

data

CDF

quantile function

IMPLICIT QUANTILE NETWORKS STATS REVIEW

data (x)

CDF

quantile function (τ)

$$
\mathcal{L}(f, x, y, \tau)= \begin{cases}\tau(y-f(x, \tau)) & y \geq f(x, \tau) \\ (\tau-1)(y-f(x, \tau)) & y<f(x, \tau)\end{cases}
$$

IMPLICIT QUANTILE NETWORKS LOSS FUNCTION

IMPLICIT QUANTILE NETWORKS LOSS FUNCTION

$$
\mathcal{L}(f, x, y, \tau)= \begin{cases}\tau(y-f(x, \tau)) & y \geq f(x, \tau) \\ (\tau-1)(y-f(x, \tau)) & y<f(x, \tau)\end{cases}
$$

IMPLICIT QUANTILE NETWORKS LOSS FUNCTION

IMPLICIT QUANTILE NETWORKS ARCHITECTURE

$$
\begin{aligned}
& p\left(y \mid x_{1}, x_{2}\right) \\
& \left(x_{1}, x_{2}\right) \rightarrow y
\end{aligned}
$$

$$
\mathcal{L}(f, x, y, \tau)= \begin{cases}\tau(y-f(x, \tau)) & y \geq f(x, \tau) \\ (\tau-1)(y-f(x, \tau)) & y<f(x, \tau)\end{cases}
$$

IMPLICIT QUANTILE NETWORKS ARCHITECTURE

$$
\begin{aligned}
& p\left(p_{T}^{\prime}, \eta^{\prime}, \phi^{\prime}, m^{\prime} \mid p_{T}, \eta, \phi, m\right) \\
& \left(p_{T}, \eta, \phi, m\right) \rightarrow\left(p_{T}^{\prime}, \eta^{\prime}, \phi^{\prime}, m^{\prime}\right) \\
& p\left(y^{(1)}, y^{(2)}, \ldots, y^{(n)} \mid \mathbf{x}\right)=p\left(y^{(1)} \mid \mathbf{x}\right) p\left(y^{(2)} \mid \mathbf{x}, y^{(1)}\right) \prod_{i=3}^{n} p\left(y^{(i)} \mid \mathbf{x}, y^{(1)}, \ldots, y^{(i-1)}\right)
\end{aligned}
$$

IMPLICIT QUANTILE NETWORKS ARCHITECTURE
$p\left(p_{T}^{\prime}, \eta^{\prime}, \phi^{\prime}, m^{\prime} \mid p_{T}, \eta, \phi, m\right)$
$\left(p_{T}, \eta, \phi, m\right) \rightarrow\left(p_{T}^{\prime}, \eta^{\prime}, \phi^{\prime}, m^{\prime}\right)$
$p\left(y^{(1)}, y^{(2)}, \ldots, y^{(n)} \mid \mathbf{x}\right)=p\left(y^{(1)} \mid \mathbf{x}\right) p\left(y^{(2)} \mid \mathbf{x}, y^{(1)} \prod_{i=3}^{n} p\left(y^{(i)} \mid \mathbf{x}, y^{(1)}, \ldots, y^{(i-1)}\right)\right.$

IMPLICIT QUANTILE NETWORKS ARCHITECTURE

$$
\left(p_{T}, \eta, \phi, m\right) \rightarrow\left(p_{T}^{\prime}, \eta^{\prime}, \phi^{\prime}, m^{\prime}\right)
$$

IMPLICIT QUANTILENETWOOKS ARCHITECTURE

$\left(p_{T}, \eta, \phi, m\right)$

IMPLICIT QUANTILENETWOOKS ARCHITECTURE

RESULTS JET CORRECTION

RESULTS JET CORRECTION

RESULTS JET SIMULATION

jet simulation

RESULTS JET SIMULATION

RESULTS JET SIMULATION

RESULTS JET SIMULATION: SUBSPACE

THANK YOU!

 in Software for High Energy PhysicsBRADEN KRONHEIM ${ }^{1,2}, ~ M I C H E L L E ~ K U C H E R A 1, ~$ HARRISON PROSPER33, RAGHU RAMANUJAN1, ALI AL KADHIM ${ }^{3}$
arXiv:2111.11415
NeurIPS 2021 - Thirty-fifth Workshop on Machine Learning and the Physical Sciences, Dec 2021, Vancouver, Canada

[^0]: Pasquale Musella • Francesco Pandolfi

[^1]: Michela Paganini, ${ }^{1,2, *}$ Luke de Oliveira, ${ }^{2, \dagger}$ and Benjamin Nachman ${ }^{2, ~} \ddagger$
 ${ }^{1}$ Department of Physics, Yale University, New Haven, CT 06520, USA
 ${ }^{2}$ Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
 (Dated: January 1, 2018)

