e- efficiency and Pirejection study of NEEMC

Carlos MUÑOZ CAMACHO WANG Pu-Kai ZHU Yuwei 09/11/2022

E resolution of NEEMC

- Single e- generator @ different given energy:
 0.5, 1, 2, 5, 10, 20 GeV
- Randomly and uniformly generated e- on theta: $130^{\circ} 177^{\circ}$, phi: $0 2\pi$
- NEEMC geometry in theta: $160^{\circ} 177^{\circ}$, eta:-1.74 -3.64, phi: $0 2\pi$
- Apply geometry cut to make sure primary electron point to NEEMC
- Select the cluster with maximum energy in each single event

Black[before correction] Red[after correction]

Do the Gaussian fit

e- efficiency calculation:

The dash line is **1.0** +/- **1.6*** σ_{E} /E respectively. Then, do the integral of bin content between 2 dash lines

e- efficiency: Integral(1.0 +/- 1.6*σ_E/E) / total_events

e- efficiency calculation:

The dash line is **1.0** +/- **2.0*** σ_E /E respectively. Then, do the integral of bin content between 2 dash lines

e- efficiency: Integral(1.0 +/- 2.0*σ_E/E) / total_events

NEEMC E resolution and e- efficiency

Red dash line: $1 - 2.0^* \sigma_E / E$ black dash line: $1 - 1.6^* \sigma_F / E$

Pion Rejection

Pion Rejection by 1.6 and 2.0 E/P cut

Pion Rejection by 1.6 and 2.0 E/P cut

- First look at single particle simulations
- Energy resolution and pion rejection values as expected
- No issue identified so far

Backup

These 2 lines will perfectly intersect at 3 GeV

NEEMC truth_E v.s. reconstructed_E