ePIC HCal Update ePIC Calorimetry Meeting November 9th, 2022

Derek Anderson

MARINE ARTES

tillen!

ePIC HCal Update | some context

- John recently implemented sPHENIX Barrel HCal in ePIC simulation
 - ⇒ Working since then to check performance
- Made JANA plugin to compare reconstructed hits/clusters in HCal to simulated particles

- Note: recent single-particle files on S3 are eicrecon output
 - \Rightarrow Can't use JANA plugin
 - : Used local sample of single π^+ (parameters in backup)
 - Will transfer functionality to ROOT macro and analyze official singleparticle files

ePIC HCal Update | energy spectra

ePIC HCal Update | sum of hit/cluster energy

ePIC HCal Update | sum of hit/cluster energy vs. particle energy

0

ePIC HCal Update | sum of hit/cluster energy vs. particle energy

ePIC HCal Update | lead cluster vs. particles

energy) cluster against particle

ePIC HCal Update | take-aways and next steps

• Take-aways:

- Hits look reasonable
- Sum of hit/cluster energies get close to particle energy
- ⇒ Current implementation will work for this simulation campaign

• Next steps:

- Implement calculation of energy resolution
- Analyze official single-particle files

Backup

Backup | simulation parameters

Parameters for local simulation

- gun.momentumMin = 2*GeV
- gun.momentumMax = 5*GeV
- gun.particle = "pi+"
- gun.distribution = "cos(theta)"
- gun.thetaMin = 45*degree
- gun.thetaMax = 135*degree

Parameters for official files

- gun.energy = 2*GeV (5*GeV, etc.)
- gun.particle = "pi+"
- gun.position = (0.0, 0.0, 0.0)
- gun.direction = (0.0, 0.0, 1.0)
- gun.distribution = "cos(theta)"
- gun.thetaMin = 45*degree
- gun.thetaMax = 135*degree

Backup | particle momentum

Backup | hit/cluster Y vs. X

