Pion rejection factor in SciGlass ECal

Renee Fatemi, Dmitry Kalinkin

University of Kentucky

ECCE proposal

Figure 2.20: (left) Pion rejection factor for the different ECals with $E/p > 1 - 1.6\sigma_E/E$ and shower shape cuts applied as a function of true and reconstructed momentum. (right) Fraction of neutral pions for which the showers from their decay photons are merged into a single cluster and can not be reconstructed using an invariant-mass-based approach for the different electromagnetic calorimeters.

https://doi.org/10.5281/zenodo.6537588 For a Gaussian peak $(1 + erf(1.6/\sqrt{2}))/2 = 94.5\%$ efficiency - that's not how they've defined, it's more like $(1 + erf(0.6/\sqrt{2}))/2 = 72.5\%$

Last week:

https://indico.bnl.gov/event/ 17705/contributions/70652/ attachments/44399/74929/oct_ campaign_benchmarks.pdf

In backup of https: //indico.jlab.org/event/546/ contributions/9980/attachments/ 7933/11151/machine_learning_ hall_ac_2022_phelps.pdf (was shown at 2nd EIC AI/ML Workshop)

Last week

- » Sum of all towers after smearing/digitization in ElCrecon (clustering not used)
- » 22.10.0 geometry
- » Ill-defined polar angles (missing data for certain energies/rapidities)

This week

- » Sum of all towers directly after simulation in DD4hep+Geant4 (clustering not used)
- » 22.11.1 geometry (full 12 mm sector gap introduced)
- » Particles thrown within acceptance of the calorimeter ($29^{\circ} < \Theta < 160^{\circ}$)

Pion rejection (0.10 GeV)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field
 Without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (0.20 GeV)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (0.50 GeV)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (1.00 GeV)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (2.00 GeV)

- » without supports carbon fiber and wedge box removed
- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (5.00 GeV)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (10.00 GeV)

- » without supports carbon fiber and wedge box removed
- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (20.00 GeV)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (0.10 GeV, logarithmic scale)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (0.20 GeV, logarithmic scale)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (0.50 GeV, logarithmic scale)

- » without supports carbon fiber and wedge box removed
- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (1.00 GeV, logarithmic scale)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (2.00 GeV, logarithmic scale)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (5.00 GeV, logarithmic scale)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (10.00 GeV, logarithmic scale)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection (20.00 GeV, logarithmic scale)

- » no gaps remove longitudinal gap and increase height (1 mm \rightarrow 0 mm), increase tower width (and ignore volume overlaps)
- » without other detectors remove all material not related to EcalBarrel, keep the magnetic field

Pion rejection: energy dependency

