NEEMC performance in arches and brycecanyon

Carlos MUÑOZ CAMACHO, WANG Pu-Kai, ZHU Yuwei

IJClab 08/12/2022

- Purpose: compare the performance of NEEMC in both arches and brycecanyon configuration
- Data from 22.11.2 arches and brycecanyon configuration eicrecon files
- Geometry cut on NEEMC: 15cm < r < 55cm (η: -3.14 ~ -1.87)

identical

Gaussian[red dash] and Crystalball[black dot] fit of Arches configuration

Gaussian[red dash] and Crystalball[black dot] fit of Arches configuration

Both E resolution calculated from the sigma parameter of crystalball fit

No significant difference on energy resolution, which agrees with material scan results

31 AcrylicOptical	6	12.399	1.1800	34.3636	64.0375	0.033	139.00	0.072290	0.027226	(0.00, 33.71,-134.85)
32 AirOptical	7	14.784	0.0012	30528.8407	71998.1725	2.541	141.54	0.072374	0.027261	(0.00, 34.33,-137.32)
33 PyrexGlassOptical	10	20.495	2.2300	12.6748	43.5474	0.500	142.04	0.111832	0.038746	(0.00, 34.45,-137.80)
34 PyrexGlass	10	20.495	2.2300	12.6748	43.5474	0.030	142.07	0.114200	0.039435	(0.00, 34.46, -137.83)
35 PyrexGlass	10	20.495	2.2300	12.6748	43.5474	0.030	142.10	0.116567	0.040124	(0.00, 34.47, -137.86)
36 AluminumOxide	11	21.812	3.8900	7.1825	25.6258	0.380	142.48	0.169487	0.054957	(0.00, 34.56, -138.23)
37 Fr4	8	16.698	1.8600	17.7433	45.4285	0.200	142.68	0.180762	0.059360	(0.00, 34.61, -138.42)
38 Copper	29	63.546	8.9600	1.4356	15.6778	0.010	142.69	0.187730	0.059998	(0.00, 34.61, -138.43)
39 Kapton	6	12.701	1.4300	28.3749	55.9194	0.020	142.71	0.188435	0.060356	(0.00, 34.61, -138.45)
40 AirOptical	7	14.784	0.0012	30528.8407	71998.1725	11.419	154.13	0.188809	0.060515	(0.00, 37.38, -149.53)
41 CarbonFiber	6	11.968	1.5000	28.0/46	51.22//	0.100	154.23	0.1923/2	0.062467	(0.00, 3/.41, -149.63)
42 AirOptical	/	14.784	0.0012	30528.8407	/1998.1/25	12.133	166.37	0.192769	0.062636	(0.00, 40.35, -161.40)
43 CarbonFiber	6	11.968	1.5000	28.0/46	51.22//	0.103	166.47	0.196441	0.064648	(0.00, 40.37, -161.50)
44 A1r	/	14.784	0.0012	30528.8407	/1998.1/25	1.335	167.80	0.196484	0.064666	(0.00, 40.70, -162.79)
45 StainlessSteel	26	55.380	8.3000	1.6774	16.2392	0.003	167.81	0.198021	0.064825	(0.00, 40.70, -162.80)
46 VM2000	8	15.811	1.4300	25.6110	59.7748	0.005	167.81	0.198222	0.064911	(0.00, 40.70, -162.80)
47 leadtungsten_optical	68	170.881	8.3000	0.8903	20.9592	2.265	170.08	2.742445	0.172985	(0.00, 41.25, -165.00)
48 VM2000	8	15.811	1.4300	25.6110	59.7748	0.021	170.10	2.743250	0.173330	(0.00, 41.25, -165.02)
49 A1r	/	14.784	0.0012	30528.8407	/1998.1/25	0.082	1/0.18	2.743253	0.1/3331	(0.00, 41.27, -165.10)
50 A1r	/	14.784	0.0012	30528.8407	/1998.1/25	0.082	1/0.26	2.743256	0.1/3332	(0.00, 41.29, -165.18)
51 VM2000	8	15.811	1.4300	25.6110	59.7748	0.021	170.28	2./44061	0.1/36//	(0.00, 41.30, -165.20)
52 leadtungsten_optical	68	1/0.881	8.3000	0.8903	20.9592	8.246	1/8.53	12.006308	0.56/118	(0.00, 43.30, -1/3.20)
53 VM2000	8	15.811	1.4300	25.6110	59.7748	0.021	1/8.55	12.00/113	0.567463	(0.00, 43.30, -173.22)
54 AIr	/	14.784	0.0012	30528.8407	/1998.1/25	0.082	1/8.63	12.00/115	0.567464	(0.00, 43.32, -1/3.30)
55 A1r	/	14.784	0.0012	30528.8407	/1998.1/25	0.082	1/8./2	12.00/118	0.567465	(0.00, 43.34, -1/3.38)
56 VM2000	8	15.811	1.4300	25.6110	59.7748	0.021	1/8./4	12.00/923	0.56/810	(0.00, 43.35, -1/3.40)
57 LeadTungsten_optical	68	1/0.881	8.3000	0.8903	20.9592	8.246	186.98	21.2/01/0	0.961251	(0.00, 45.35, -181.40)
	8	15.811	1.4300	25.6110	59.7748	0.021	187.00	21.2/09/5	0.961596	(0.00, 45.35, -181.42)
59 CarbonFiber	0 C	11.968	1.5000	28.0740	51.2277	0.082	187.09	21.2/3912	0.963206	(0.00, 45.37, -181.50)
	0	11.908	1.5000	28.0740	51.22//	0.082	187.17	21.270849	0.964816	(0.00, 45.39, -181.58)
61 VM2000	ð CO	12.011	1.4300	25.0110	59.7748	0.021	187.19	21.277034	0.905100	(0.00, 45.40, -181.00)
62 StaiploseStool	26	170.001	0.3000	1 6774	20.9092	1.240	100.43	22.009000	1.024500	(0.00, 45.70, -162.00)
64 Air	20	14 704	0.0000	20529 9407	10.2392 71009 1725	6 190	100.43	22.071422	1.024430	(0.00, 45.70, -162.00)
04 ATI	, 	14./04	0.0012	30328.8407	/1990.1/25	0.100	194.01	22.071024	1.024544	(0.00, 47.20, 188.80)
0 Average Material	52	128.295	0.8853	8.5838	189.9477	194.610	194.61	22.671624	1.024544	(0.00, 47.20,-188.80)
	_									
31 AirOptical	7	14.784	0.0012	30528.8407	71998.1725	0.052	150.03	0.063985	0.024059 (0.00, 36.39, -145.55)
32 Aluminum	13	26.982	2.6990	8.8963	39.8672	0.515	150.54	0.121917	0.036987 (0.00, 30.51, -146.05)
33 Alf	12	14.784	0.0012	30528.8407	/1998.1/25	0.958	157.50	0.122145	0.03/084 (
	13	20.902	2.0990	0.0903	39.00/2	6.059	150.02	0.1000/0		0.00, 50.52, -155.50)
35 All	12	14.784	0.0012	30528.8407	/1998.1/25	0.958	165 40	0.180300		
	° 51	20.902	2.6990	0.0903	39.00/2	0.515	105.49	0.230239		0.00, 40.14, -100.55)
37 C4FI0_FFRICH	0 12	17.000	2 6009	0 0062	20 2672	0.070	166 47	0.230491	0.005129 (0.00, 40.35, -101.40)
	13	20.902	2.0990	0.0905	71009 1725	1 225	167 90	0.250077	0.005715 (0.00, 40.37, -101.30)
40 StainlessSteel	26	55 380	8 3000	1 6774	16 2392	0 003	167 81	0.251658	0.065892 (
41 VM2000	-20	15 811	1 4300	25 6110	59 7748	0.005	167 81	0.251859	0.065978 (
42 leadtungsten optical	68	170 881	8 3000	0 8903	20 9592	2 265	170 08	2 796082	0 174051 (0.00, 40.70, 102.80)
43 VM2000	-00	15 811	1 4300	25 6110	59 7748	0 021	170 10	2 796887	0 174396 (0.00, 41.25, 105.00)
44 Air	7	14.784	0.0012	30528.8407	71998.1725	0.082	170.18	2.796890	0.174398 (0.00, 41.27, -165.10)
45 Air		14 704	0.0012			01001				
	7_	14./84	0.0012	30528.8407	71998.1725	0.082	170.26	2.796893	0.174399 (0.00. 41.29165.18)
46 VM2000	7 8	14.784	0.0012	30528.8407 25.6110	71998.1725 59.7748	0.082 0.021	170.26 170.28	2.796893 2.797697	0.174399 (0.174744 <u>(</u>	0.00, 41.29,-165.18) 0.00. 41.30165.20)

48 VM2000

51 VM2000

53 VM2000

56 VM2000

59 Air

54 CarbonFiber

55 CarbonFiber

58 StainlessSteel

0 Average Material

52 leadtungsten_optical 68

57 leadtungsten_optical 68 170.881

49 Air

50 Air

8

7

8

8

6

6

8

26

15.811

14.784

14.784

15.811

170.881

15.811

11.968

11.968

15.811

55.380

14.784

53 131.227

1.4300

0.0012

0.0012

1.4300

8.3000

1.4300

1.5000

1.5000

1.4300

8.3000

8.3000

0.8892

0.0012 30528.8407

25.6110

25.6110

0.8903

25.6110

28.0746

28.0746

25.6110

0.8903

1.6774

8.5636

30528.8407

30528.8407

59.7748

59.7748

20.9592

59.7748

51.2277

51.2277

59.7748

20,9592

16.2392

189.7501

71998.1725

71998.1725

71998.1725

0.021

0.082

0.082

0.021

8.246

0.021

0.082

0.082

0.021

1.240

0.003

6.180

194.610

178.55

178.63

178.72

178.74

186.98

187.00

187.09

187.17

187.19

188.43

188.43

194.61

194.61

12.060749

12.060752

12.060755

12.061560

21.323806

21.324611

21.327549

21.330486

21.331291

22.723522

22.725059

22.725261

22.725261

0.568530

0.568531

0.568532

0.568877

0.962318

0.962663

0.964273

0.965882

0.966227

1.025366

1.025525

1.025611

1.025611

Arches config. material scan (0,0,0) – (0,50,-200)

Integrated rad. length 22.67 cm

Brycecanyon config. material scan (0,0,0) - (0,50,-200)

43.30, -173.22)

43.32,-173.30)

43.34, -173.38)

43.35,-173.40)

45.35, -181.40)

45.35, -181.42)

45.37, -181.50)

45.39, -181.58)

45.40,-181.60)

45.70, -182.80)

45.70,-182.80)

47.20,-188.80)

0.00, 47.20, -188.80)

0.00,

0.00,

0.00,

0.00,

0.00,

0.00,

0.00,

0.00,

0.00,

0.00,

0.00,

0.00,

Integrated rad. Lengtl 22.72 cm

after energy correction

Using the energy resolution from crystal ball fit to apply the different E/P cut for calculating e- efficiency and pi rejection

8000 8000 pi rejection pi rejection 0.5GeV • 0.5GeV 7000 1.0GeV 7000 1.0GeV 2.0GeV 2.0GeV 5.0GeV 5.0GeV 6000 10.0GeV 6000 10.0GeV 20.0GeV 20.0GeV 5000 5000 4000 4000 3000 3000 2000 2000 1000 1000 0 55 0∟ 55 90 95 10 e- efficiency[%] 90 95 10 e- efficiency[%] 60 65 70 75 80 90 100 60 65 70 80 100 85 75 85 90

e- efficiency v.s. pi rejection [arches]

e- efficiency v.s. pi rejection [brycecanyon]

E/P cut: 1.0 ~ 2.4 * $\sigma_{_{E}}/\text{E}$ 0.2 * $\sigma_{_{E}}/\text{E}$ increment for each point

Summary:

- No significant difference of performance of NEEMC as different RICH configuration in front of NEEMC

EcalEndcapNClusters.nhits
EcalEndcapNClusters.position.x
EcalEndcapNClusters.position.y
EcalEndcapNClusters.position.z

Backup

Pion energy deposition before energy correction

Data processing in EICrecon

EEMC:EcalEndcapNIslandProtoClusters:sectorDist', '5.0*cm', EEMC:EcalEndcapNIslandProtoClusters:dimScaledLocalDistXY', '1.8,1.8' (These 2 values are marked "*", which means they are well tuned)

The following results will focus on 22.11.2 arches and brycecanyon

Number of raw hits in arches[black] and brycecanyon[red]

Notice the range of xaxis

Number of rec hits in arches[black] and brycecanyon[red]

Notice the range of xaxis