Pion rejection factor in SciGlass ECal

Renee Fatemi, Dmitry Kalinkin

University of Kentucky

Outline

Scintillation quenching

Erratum for last presentation

Pion rejection in the negative endcap

Proto-clustering in SciGlass for pion rejection

Machine learning

All studies in this presentation are conducted with DD4hep simulation using ePIC 22.11.1 geometry

Scintillation quenching

4

Scintillation quenching without optical simulations in G4

When measuring deposited energy one does not expect to be sensitive to scintillation effects, yet:

- » Birks' law correction is enabled by DD4hep for detectors processed with Geant4ScintillatorCalorimeterAction: see Geant4SDActions.cpp of DD4hep
 - This uses optional Geant4 facilities
- » Log message "### Birks coefficients for Geant4 materials" should be a good indicator that Birks' constants are applied see Geant4StepHandler.cpp of DD4hep, see G4EmSaturation.cc of G4
- » Calorimeters are Geant4ScintillatorCalorimeterAction by default DDG4 INFO +++ EcalBarrel type:calorimeter --> Sensitive type: Geant4ScintillatorCalorimeterAction
- » Official production log have those messages \Rightarrow Birks' law is applied to SciGlass!
- » Constant value of 0.0333 mm/MeV is not measured, taken from PbWO4

Birks's law effect on E/p

Quenching significantly reduces high-end energy tail for pions.

Birks's law effect on pion rejection

Quenching somewhat improves the pion rejection.

Birks's law effect on pion rejection: Summary

Quenching somewhat improves the pion rejection.

Erratum for last presentation

Bug in previously shown results

Corrected slides uploaded back to Indico: https://indico.bnl.gov/event/17706/ Minor issue with the "without other detectors" curve:

- » Was supposed to remove all detectors other than calorimeter and keep the magnetic field
- » Configuration files from "no gaps" were used by accident with the intended "epic_sciglass_only" configuration
- » As a result, detectors were removed, but calorimeter was simulated without gaps and without magnetic field

Pion rejection: energy dependency

Curves on the left and right, by construction, are identical except for the "no gaps" one that was affected by the bug.

Pion rejection in the negative endcap

EcalEndcapN

- » A question was raised during GD/I regarding apparent difference to endcap
- » A consistent comparison to SciGlass has to use an identical analysis procedure
- » A chance to compare PbWO4 vs SciGlass for calorimeter material
- » Electrons and negative pions thrown uniformly with $2.82 < \theta < 3.08$ at the geometry of EcalEndcapN with modified material and tower length (45 cm for SciGlass to accomodate for radiation length scaling)

E/p for EcalEndcapN

Better electron resolution in PbWO4 compared to SciGlass.

Pion rejection in EcalEndcapN

Better electron resolution in PbWO4 compared to SciGlass results in better pion rejection at a fixed efficiency.

Pion rejection in PbWO4

https://indico.bnl.gov/event/17705/contributions/70651/attachments/ 44403/74927/NEEMC_single_particle_first_look.pdf Pion rejection of 10^3 is achieved at $\approx 85\%$ efficiency

Pion rejection in EcalEndcapN: Summary

Better electron resolution in PbWO4 compared to SciGlass results in better pion rejection at a fixed efficiency.

Proto-clustering in SciGlass for pion rejection

Single particle event and clustering

No proper clustering for SciGlass in ElCrecon or Juggler – adjacency using decoded cellID is not implemented yet (see <u>discussion on Mattermost</u>). A crude clustering was implemented by selecting an $N \times N$ region around the leading tower.

Example e^- events and corresponding 5×5 clusters

Single particle event and clustering

No proper clustering for SciGlass in ElCrecon or Juggler – adjacency using decoded cellID is not implemented yet (see <u>discussion on Mattermost</u>). A crude clustering was implemented by selecting an $N \times N$ region around the leading tower.

Example π^- events and corresponding 5×5 clusters

Cluster energy vs cluster size

Will now focus on 3x3 clustering (see backup for others).

E/p for sum in cluster vs full sum

» sum all towers - sum of raw $E_{dep.}$ for all 8 160 towers

» sum towers in 3x3 around leading - sum of raw $E_{dep.}$ 9 towers around the one with the highest energy

Pion rejection using sum in cluster vs full sum

» sum all towers - sum of raw $E_{dep.}$ for all 8 160 towers

» sum towers in 3x3 around leading - sum of raw $E_{dep.}$ 9 towers around the one with the highest energy

Pion rejection using sum in cluster vs full sum: Summary

A significant improvement when using clustering!

Machine learning

Pion rejection using Machine Learning

Three methods to implement 3x3 cluster (9 inputs):

- » E/p classifier
- » Multi-layer Perceptron (default settings from sklearn, tuned a bit)
- » Adaptive Boosting (default settings from sklearn, untuned)

Pion rejection using Machine Learning: Summary

Ways to improve

- » ML classifiers are trained for each energy separately
- » Only 9 energy inputs are used classifiers are not told where in the calorimeter the cluster is
- » Introduction information from tracking (track φ and η) for even more precise hit position might be possible to even recover some information lost due to the gaps
- » Hyperparameter tuning
- » Wild idea: Change of loss function to be sensitive specifically at high-efficiency?

E/p for sum in cluster vs full sum

Accellation of the second seco

Pion rejection using sum in cluster vs full sum

Pion rejection using sum in cluster vs full sum: Summary

Binary classifier probability

