Longitudinally segmented Forward HCal (LFHCal) Concept & R&D

Friederike Bock (ORNL) EIC Project Detector Calorimetry Review December 6-7, 2022

Brookhaven

Electron-Ion Collider

Jefferson Lab . DEPARTMENT OF Office of Science

EPIC Collaboration Decision

- Beampipe Calorimeter ~60x50 cm
 - Both detector concepts using longitudinally segmented Steel-Scintilator HCal
 - ECCE LFHCal with additional W-layers offers larger shower containment
 - Construction method allows to vary tower sizes as function of R to possibly reduce cost

- ⇒ Consensus within WG to recommend ECCE LFHCal for implementation & construction and change plans for eRD107 accordingly
- Exploring highly granular/pixelized inlay around beam pipe similar to CALICE W-AHCAL design as future upgrade

EPIC Collaboration Decision

General considerations

- Both concepts follow similar general idea: highly segmented HCal in x y & z
- Current simulations don't entirely reflect reality (Steel-HCal response too good) \Rightarrow expecting 1.5 2x worse resolution in reality with same reco-algorithms
- SiPM-Readout & integration with ECal can be done in similar way for both

pHCAL

Pros

Easy construction, tight tolerance assembly, solid mechanical structure

 Good understanding of general cost & risk (STAR FCS)

Cons

- Max. 4 long segments & effi loss due to signal splitting using time response
- Once installed segmentation is fixed
- Needs assembly at IP6

<u>LFHCAL</u>

Pros

- Larger shower containment
- Somewhat flexible segmentation in x-y & z, better performance using ML possible
- Possibility for distributed module assembly & testing

Cons

- More complex assembly & integration (fiber routing)
- No test beam yet
- Higher cost

Concept

The General Idea

Concept:

• PSD [PSD TDR] inspired Fe/W-Scint calorimeter

60 layers of Steel $_{\rm (16\ mm)}\text{-}Sci$ plates $_{\rm (4mm)}$ + 10 layers of W $_{\rm (16\ mm)}\text{-}Sci$ plates $_{\rm (4mm)}$

- Multiple towers combined in one module to reduce dead areas, increase granularity
- Read-out:
 - 7 signals per tower (signals combined from 10 Sci-plates)
 - readout position: after full HCal
- Modules of different sizes (8M, 4M, 2M, 1M) to maximize coverage & assembly efficiency

Participating institutes:

 ORNL, BNL, FNAL, ISU, GSU, Yale, UCR, UTK, Valpo

Calorimeter Details

parameter	LFHCal
inner radius (envelope)	17 cm
outer radius (envelope)	270 cm
η acceptance	$1.2 < \eta < 3.5$
tower information	
x, y ($R < / > 0.8$ m)	5 cm
z (active depth)	140 cm
z read-out	10 cm
# scintillor plates	70 (0.4 cm each)
# aborber sheets	60 (1.6 cm steel)
	10 (1.6 cm tungsten)
weight	~ 30.6 kg
interaction lengths	$6.9 \lambda / \lambda_0$
Molière radius R_M	21.1 cm (π^{\pm} shower)
Sampling fraction f	0.040
# towers (inner/outer)	9040
# modules	
8M	1091
4M	76
2M	2
1M	4
# read-out channels	$7 \ge 9.040 = 63.280$

- $\bullet\,$ Some flexibility in composition vs. length, current design 6.9 λ/λ_0
- $\bullet\,$ Total of 9040 towers with $\sim 64K$ readout channels
- Total cost: \$17.7M (w/o read-out cards)

Simulated Performance

GEANT Implementation in Fun4All

- Largely realistic implementation of geometry, refinements for module edges needed
- First light propagation studies, cross checks planned with test sub-tiles at ORNL (fiber routing)

Realistic Geometry Implementation for EPIC

- Translation of detailed geometry into new EPIC software framework nearly completed
- First resolution studies with significantly simpler geometry on their way

LFHCAL Performance

- Cluster finding and track matching efficiencies good in center of LFHCAL, losses towards edges
- Small η dependence for energy resolution
- Studies to improve clusterization further using ML started
- Exploring possibility to change granularity of readout as function of *R*
- Performance overestimated at the moment with standard response implementation in GEANT4 Fun4All (1.5x from other setups)

LFHCAL Performance - EPIC framework

- Problem in original simulation for LFHCal identified through validation with CALICE geometry in DD4HEP
 - Integration over too long time
 - Improved lower energy cut offs
- Updated resolution parameters with idealized geometry
- Results from realistic geometry including clusterization to follow soon

Mechanical Design, Assembly & Schedule

Current 8M Scintillator Plate Design

- Most scintillator plates produced as 1 unit of 100x200mm plates (8 single tower tiles)
- Separation of tiles edged into the plate (95%) through, refilled with Epoxy-TiO₂ mix
- Wrapped in Tyvek paper and Kapton tape or painted with TiO₂ rich paint

- Fiber thickness chosen for minimal light loss while bending (0.5mm)
 → other geometries for embedding under
 - consideration (i.e. 1/4 circle)
 - Originally costed from Uniplast as 1 unit of assembly + material
- Updated estimate including (material, fiber installation by engineer, wrapping by students, tooling)
 - \rightarrow new estimate driving by labor for fiber installation
- Exploring possible robot supported options for tile assembly

Tile Assembly

- Refilling of gaps with TiO₂-Epoxy mix using collaborative robot
- ② Measuring fiber quality & cutting to desired length
- 3 Laying WLS-fibers in groove, fixating them using a few glue dots
- ④ Roll WLS-fibers up on tray with tile
- 5 Tyvek or additional coating with white paint
- Stack trays & transport to 8M assembly site

8M assembly detail

- a) Mount assembled steel/tungsten frame in pivot
- b) Slot scintillator tiles in frame from back to front Fibers for bottom side slotted through, caught by tray on bottom
- c) After 10 tiles sort fibers 5/5 & place plastic strip as separator, tape on top
- d) Continue till top side finished & cut length of fibers to fit readout
- e) install cover plate
- f) Flip module in pivot, remove tray
- g) Sort fibers & assemble as on top

Stacking Design & Support structure

- Half disk assembled on trolley to be rolled to the side
- Single 8M-modules arranged in "brick-like-structure"
- Notch and groove design for alignment in x & z direction

Schedule

- Schedule fully developed with several long lead procurement items:
 - Steel, SiPMs, scintillator plastic, WLS fibers
- Partial deliveries from vendors with time allow earlier start of assembly
- Foresee multiple module production sites/stations, default: 6 stations
- Tile assembly simultaneous to scintillator
 & WLS procurement with slight offset
- Magnetic field map testing starting 04/29
- Single component testing foreseen during assembly
- Final module tests after each module assembly & in complete stack

Read-out Concept

Read-out 8M module

• High granularity needed to try to distinguish shower maxima close to beam pipe

• HCal:

read out in 7 layers longitudinally desirable min measurable tower energy 3-5 MeV, max 20-30 GeV in single tower segment

- LFHCal 1 SiPM per 10 fibers (7 per tower) -i.e Hamamatsu S13360-3025PE (14.4K pixels)
- HCal readout at end of module (max. 10cm)
- Small light collection prisms might be needed infront of SiPM
- Idea to use each 1 H2GCROC3 (up to 70 channels) for readout of HCal (ideally common chip/board design with WSciFi-ECal & ALICE FoCal-H)

Current Read-out Concept

- The H2GCROC3 requires the L1 trigger for readout, with the maximum speed of 960 kHz
- The expected hit rate in one channel of LFHCal is up to 50 kHz:
 - With possible 4 sample readout we would reach a maximum of 200 kHz
 - Compatible with streaming readout towards the EPIC DAQ system

Details see Norbert's talk

R&D activities & plans

eRD107 - Plans & Milestones

Prototype tile production using machining & injection molding (04/23)

- Assembled prototype tiles using machined scintillator plates
- Assembled prototype tiles using injection molded scintillator tiles
- Documentation of procedures for manual assembly of tiles & WLS fibers

2 Reconstruction optimization (09/23)

- Write-up of optimization results from simulations
- 3 Sensor board development (07/23)
 - ► First prototype of sensor board for Si-PM readout (together with eRD109)
- ④ Small test module assembly (07/23)
 - First prototype of single segment of 8M module
- First automated scintillator tile assembly (08/23)
 - Assembled prototype tiles
 - Documentation and Evaluation of procedures for automated assembly of tiles & WLS fibers

6 Tile Characterization (08/23)

 Write-up of test bench & test beam measurement for all assembled tile-prototypes

Prototype tile production using machining & First automated scintillator tile assembly injection molding • Tile assembly time & labor extensive w/

- Vendor replacement needed for Uniplast
 - a) Machining plastic scintillator plates (~ \$80/tile, 3 yr prod. time)
 - b) Injection molding tile (\sim \$4 6/tile, 3 month prod. time)
- Opportunity for significant cost reduction w/ injection molding
- Performance and mechanical stability tests needed in both cases

- Tile assembly time & labor extensive w/ classical methods
- Exploring automated assembly using collaborative robots for:
 - Refilling sub-segmentation with TiO₂
 - Fiber laying and fixating in groves
 - Automatic measurements of WLS-fiber quality

Scintillator Characterization & Optimization

• Characterization of assembled tiles according to:

- Light yield
- Cross-talk among different tiles
- Response uniformity
- Durability and mechanical stability
- Initial geometry optimization using TracePro simulations
- Usage of available test-stands at universities for tile characterization
- Possibility to test multiple scintillator materials/dopant concentration in particular for injection molding
- Development of a SiPM board and WLS fiber connector suitable for production module

Prototypes and Test beams

- Full 8M module assembly with single component testing
 - Scintillator tiles
 - 2 Single segment of 8M module (20cm) including initial read-out design
 - ③ Full mechanical mock-up of 8M module
 - ④ Full 8M modules including initial read-out design
- Main measurements
 - Characterization of spatial distribution and uniformity of MIP response for different tile types
 - Saturation behavior of combined tile and SiPM readout system for single segment
 - Measuring the individual and combined response of tiles to EM-showers
 - Spatial and energy resolution of partial and full module LFHCAL module
 - ► Combined test-beam w/ pECal to characterize LFHCal partial and full module response behind ECal
- Current Read-out electronics design based on CMS-SiPM-HGCROC (ASIC) Final electronics R&D for EIC specific readout board within eRD109 based on same ASIC with possible small modifications

Summary

- LFHCal concept adapted from established calorimeter (PSD calorimeter)
- Mechanical design far advanced
- Simulation setups in good shape with realistic geometries
- Performance goals for EIC physics reached with proposed concept with potential for improvements with modern reconstruction techniques
- Workforce is experienced in building large scale calorimeter systems (ALICE EMCal, sPHENIX ECal)
- Challenges in construction process addressed by dedicated R&D plans
- Performance validation foreseen in test beams during next 2 years

Thanks!

Conservative Cost Estimate

Example 8M module costs:

Material procurement	Units	Unit Pricing
Absorber plates + support	1	\$ 1750
Scintilator plates	70	\$ 65
tyvek + capton	4.04	\$ 0.4
WLS fibers	1360	\$ 3
8M module cost:	1091	\$9822
Assembly labor	hours	cost
installing fiber mech. engineer	17.5 h	\$ 2680.5
tile wrapping PhD students	7 h	\$ 140
tower assembly mech. engineer	0.083 h	\$ 12.8
tower assembly PhD Student	1.92 h	\$ 38.4
tower assembly Undergrad	11 h	\$ 220
tower assembly Postdoc	1 h	\$ 71
tower assembly PhD Student	4.5	\$ 90
8M module cost:	1091	\$2252.7
Electronics	Units	Unit Pricing
SiPMs	56	\$ 10
mounting boards	1	\$ 10
cable+HV/LV	1	~\$822
8M module cost:	1091	\$1392
00000000		SWWWW

Additional costs:

- R&D cost: 393K
- Tooling: 200K
- Support Structure: 100K
- Installation: 382K

Total costs:

• estimated for:

1091x8M module, 76x4M modules, 2x2M modules, 4x1M modules

- Module prices don't exactly scale as labor doesn't scale
- Cost adapted to US prices w/o relying on Uniplast
- total unescalated cost: \$17.7M
 → estimates w/ Uniplast quotes \$11.2M

Calorimeter Details & PED request

parameter	LFHCal
inner radius (envelope)	17 cm
outer radius (envelope)	270 cm
η acceptance	$1.2 < \eta < 3.5$
tower information	
x, y (R 0.8 m)	5 cm
z (active depth)	140 cm
z read-out	10 cm
# scintillor plates	70 (0.4 cm each)
# aborber sheets	60 (1.6 cm steel)
	10 (1.6 cm tungsten)
weight	$\sim 30.6 \text{ kg}$
interaction lengths	6.9 λ / λ_0
Molière radius R_M	21.1 cm (π^{\pm} shower)
Sampling fraction f	0.040
# towers (inner/outer)	9040
# modules	
8M	1091
4M	76
2M	2
1M	4
# read-out channels	7 x 9,040 = 63,280

activity	cost in F	total cost		
	ORNL	BNL	in FY23 k\$	
Support structure desgin & integration with pECal	75	0	75	
Rail/slide design	0	50	50	
test production of module	20	0	20	
tooling design + function test	50	0	50	
Total	145	50	195	

eRD107 Funding request

activity	cost in l ORNL	FY23 k\$ FNAL	BNL	UTK	GSU	Yale	ISU	Valpo	UCR	total cost in FY23 k\$	institute	cost in FY23 k\$ eng. and tech.	material	equipment	travel	total cost in FY23 k\$
Machined Tiles	11.7	0	0	0	0	0	0	0	0	11.7	ORNL	29.8	16.8	36.0	2.0	84.6
Injection Molded Tiles	2.0	52.9	0	0	0	0	0	0	0	54.9	FNAL	52.9	0	0	0.0	52.9
Auto Tile Assembly	20.0	0	0	0	0	0	0	0	0	20.0	BNL	0	0	0	2.0	2.0
Tile Char (Lab)	16.0	0	0	0	0	ő	ő	0	0	16.0	CSU	0	0	0	2.0	2.0
Sensor Board	12.2	0	0	0	0	0	0	0	0	12.2	Yale	0	0	0	2.0	2.0
LEHCAL Mochanics	21.7	0	0	0	0	0	0	0	0	21.7	ISU	0	0	0	2.0	2.0
The Chan (Beers)	21.7	0	20	20	20	20	20	1.0	20	21.7	Valpo	0	0	0	1.0	1.0
The Char. (Beam)	1.0	0	2.0	2.0	2.0	2.0	2.0	1.0	2.0	14.0	UCR	0	0	0	2.0	2.0
Total	84.6	52.9	2.0	2.0	2.0	2.0	2.0	1.0	2.0	150.5	Total	82.7	16.8	36.0	15.0	150.5

Largest fraction of funding for engineers and technicians 0

- Additional funds used for material, test equipment & travel for test beam campaigns
- Significant in-kind contribution from universities and laboratories for assembly, simulation and data analysis $(\sim 2140h)$
- Parallel PED request for mechanical & electrical engineering 0 support will be submitted to further final design of LFHCAL

Task	Estimated cost in \$ per year					
	FY24	FY25	FY26			
mechanical engineering	40K	40K	20K			
electrical engineering	30K	30K	20K			
materials	30K	30K	40K			
test beam support	10K	10K	10K			
total	110K	110K	90K			

eRD107: Detailed cost table

ePl	C(4	5
	-	Y	/

Institute	Item	Cost per item in \$	Number of items	Total cost in \$	To be compl. by
	Machined Scintillator Tiles:				Q1/2023
ORNL	BC-408 plastic scintillator sheet	~ 150	20	3K	
ORNL	BCF-91A WLS fiber	1500	1	1.5K	
ORNL	tile machining	180/h	40h	7.2K	Q4/2022
ORNL/UTK	tile assembly		40h	(in kind) 0K	Q4/2022
	Injection Molded Scintillator Tiles:				O2/2023
FNAL	mold design + production	50 000	1	50K	Q4/2022
ORNL	travel			2K	
FNAL	raw material + dopant			(in kind) 0K	
FNAL	injection molder setup + operation	180/h	16h	2.9K	Q1/2023
ORNL/UTK	tile assembly		40h	(in kind) 0K	Q1/2023
	Automated Tile Assembly:				2024
ORNL	robotic arm	20 000	1	20K	
ORNL	robot programming and evaluation		40h	(in kind) 0K	Q3/2023
	Tile Characterization (Lab Bench):				03/2023
ORNL/UTK	scintillator material characterization		20h	(in kind) 0K	02/2023
ORNI.	waveform sampling readout (8ch)	16000	1	16K	Q2/ 2020
CSU/Yale/UCR	tile lightwield testing	10000	160b	(in kind) 0K	03/2023
ISU/BNL	tile simulation		160h	(in kind) 0K	03/2023
1007010	Como - Boond		10011	(in failu) off	(01./2022
OPNI	Sensor Board:	180.0	151	2.78	Q1/2023
ORNI	concors: cilicon photomultiplices	20	200	OV	
ORNL	sensor board production, assembly	50	10	0.5K	01/2023
ONTE	sensor board production, asseniory	50	10	0.5K	Q17 1010
THE OWNER AND IN	Reconstruction Optimization:		(10)	0 . L. D. M.	2025
UTK/Yale/BNL	simulations/ digitization/ reconstruction/ analysis		640h	(in kind) 0K	
	LFHCAL Mechanics:				Q3/2023
ORNL	mechanical engineer	180/h	105h	18.9K	
ORNL	absorber material + fasteners	40	70	2.8K	
UTK/Yale	absorber machining	100/h	20h	(in kind) 0K	Q2/2023
	Tile Characterization (Test Beam):				Q3/2023
ORNL	assembly and shipping			1K	
All	test beam travel			13K	
ORNL/UTK	test beam preparation		80h	(in kind) 0K	Q2/2023
ORNL	test beam		120h	(in kind) 0K	Q3/2023
Yale	test beam		120h	(in kind) 0K	Q3/2023
BNL	test beam		120h	(in kind) 0K	Q3/2023
UTK	test beam		120h	(in kind) 0K	Q3/2023
GSU	test beam		120h	(in kind) 0K	Q3/2023
ISU	test beam		120h	(in kind) 0K	Q3/2023
Valpo	test beam		120h	(in kind) 0K	Q3/2023
UCR	test beam		120h	(in kind) 0K	Q3/2023
Total				150.5K	