# ePIC SVT configuration for eRD104/111/113 work 

N. Apadula, G. Contin, G, Deptuch, D. Elia, L. Gonella, P. Jones, I. Sedgwick, E. Sichterman

EIC SC general meeting - 7 November 2022

## EIC SC work for FY23

- The work of the EIC SC for the development of the EPIC silicon vertex and tracking (SVT) detector proceeds within the eRD104, eRD111, eRD113 projects.
- The combined aim of eRD104/111/113 for FY23 is to

Be ready to design the LAS sensor in FY24.
Reach a mature conceptual design of all items of the EPIC SVT (supported by prototyping/testing of components).

Full details in the proposals at https://wiki.bnl.gov/conferences/index.php/ProjectRandDFY23

- Work needs to start work towards these goals. Clearly, there still many open points and unknowns, but we need to start working on technical details and engineering aspects that will feed back important information to evolve the design.
- Let's discuss a starting point today $\rightarrow$ ePIC SVT configuration v0.0


## Current status: ePIC SVT layout

- EPIC SVT layout developed for the first simulation campaign

5 barrel layers, 5 disks per side
See Ernst's talk at https://indico.bnl.gov/event/17418/
Current implementation in DD4Hep in Shujie's talk at https://indico.bnl.gov/event/17394/
This design includes only Si active area and simplified description of support structures and services $\rightarrow$ Engineering details need to be worked out and added, see Nikki's talk next.

Also, we are still using truth seeding and have no background embedded in simulations, so this layout might still change.

| BARREL | $\mathrm{r}[\mathrm{mm}]$ | $\mathrm{I}[\mathrm{mm}]$ | $\mathrm{X} / \mathrm{X0} \%$ |
| :--- | :--- | :--- | :--- |
| Layer 0 | 36 | 270 | 0.05 |
| Layer 1 | 48 | 270 | 0.05 |
| Layer 2 | 120 | 270 | 0.05 |
| Layer 3 | 270 | 540 | 0.25 |
| Layer 4 | 420 | 840 | 0.55 |


| DISKS | $+\mathrm{z}[\mathrm{mm}]$ | $-\mathrm{z}[\mathrm{mm}]$ | $\mathrm{X} / \mathrm{X0} \%$ |
| :--- | :--- | :--- | :--- |
| Disk 1 | 250 | -250 | 0.24 |
| Disk 2 | 450 | -450 | 0.24 |
| Disk 3 | 700 | -650 | 0.24 |
| Disk 4 | 1000 | -900 | 0.24 |
| Disk 5 | 1350 | -1150 | 0.24 |



## Current status: Sensor technology

- 65 m technology validation almost completed with testing of MLR1 structures $\rightarrow$ no show stopper.
- ER1 submission of first, wafer-scale sensor by end of the year. Scope: learning about stitching and yield of large area sensor.

```
Expect to know yield in about 9 months to one year from now.
```

- Reticule size not yet fixed, current assumption to progress our work on LAS and conceptual designs $18.85 \mathrm{~mm} \times 30 \mathrm{~mm}$.

```
Expect to know final reticule size at ITS3 ER2, currently scheduled for Q1 }24
```



Stitching for ITS3 sensor


## Layout Studies

- EIC Vertex Layers

Use ITS3 curved wafer-scale stitched sensors
Three layers (L0, L1, L2); Radii $=36 \mathrm{~mm}, 48 \mathrm{~mm}$ and 120 mm (see note below)

- EIC Sagitta Layers

Baseline is smaller format stitched sensors (EIC LAS) on staves
Two layers (L3, L4); Radii $=270 \mathrm{~mm}$ and 420 mm

- EIC Disks

Several sensor variants (different sizes) needed for improved yield and tiling flexibility Requires changes to stitching plan \& periphery
Studying optimum tiling geometry

- What follows is based on studies done by Peter Jones


## ALICE ITS3 Sensor Layout



## EPIC Vertex Layers



## EPIC Vertex and Sagitta Layers

Note: these are active lengths; they do not include the periphery


L0, L1 and L2 lengths are single sensors that are 270 mm long (9 reticles)
L3 length can be achieved using two sensors 270 mm long (9 reticles), or three sensors 180 mm long (6 reticles) Choice of two or three sensors may be decided by sensor yield
L4 length can be achieved using four sensors 210 mm long (7 reticles)

## EPIC Sagitta Layers

## - Sagitta Layers

ePIC ITS3-VL EIC-BL


Default design consists of ITS2-like staves

- L3

50 staves, $2 \times 18.85=37.7 \mathrm{~mm}$ wide
Mean radius $=268.4 \mathrm{~mm}$
$\mathrm{R} \phi$ overlap $=3.5 \mathrm{~mm} \sim 10 \%$
$2 \times 2=4$ or $2 \times 3=6$ sensors per stave
Require $2001 \times 9$ sensors or $3001 \times 6$ sensors

- L4

78 staves, $2 \times 18.85=37.7 \mathrm{~mm}$ wide
Mean radius $=418.5 \mathrm{~mm}$
$\mathrm{R} \phi$ overlap $=3.5 \mathrm{~mm} \sim 10 \%$
$2 \times 4=8$ sensors per stave
Require $6241 \times 7$ sensors

## Wafer Usage - Sagitta Layers

EIC-LAS


L3 Option 1
$1 \times 9$ sensors 5 sensors per wafer 45 reticles per wafer 200 sensors (40 wafers)

Higher cost, lower material
Use as default.

EIC-LAS


L3 Option 2
$1 \times 6$ sensors
11 sensors per wafer
66 reticles per wafer 300 sensors (28 wafers)

EIC-LAS


L4 Option 1
$1 \times 7$ sensors
10 sensors per wafer
70 reticles per wafer
624 sensors ( 63 wafers)

## Lower cost

Higher material
Note \#1: 100 micron dicing lanes between each sensor assumed
Note \#2: if using $2 \times 9$ or $2 \times 6$ sensors, both L3 options will require more wafers; module concept needed (one module made of two $1 \times 9 / 1 \times 7$ sensors for L3/L4)

## Summary - Barrel v0.0

Note: these are active lengths; they do not include the periphery

| Layers | Reticules | Sensor <br> width $\times$ length <br> $\left[\mathrm{mm}^{2}\right]$ | Layer length <br> $[\mathrm{mm}]$ | Layer radius <br> $[\mathrm{mm}]$ | Number of <br> sensors per <br> layer | Number of <br> staves |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L0 | $3 \times 9$ | $56.55 \times 270$ | 270 | 36 | 4 | NA |
| L1 | $4 \times 9$ | $75.4 \times 270$ | 270 | 48 | 4 | NA |
| L2 | $5 \times 9$ | $94.25 \times 270$ | 270 | 120 | 8 | NA |
| L3 | $1 \times 9$ | $18.85 \times 270$ | 540 | 268.4 | 200 | 50 |
| L4 | $1 \times 7$ | $37.7 \times 210$ | 840 | 418.5 | 624 | 78 |

## Forward and Backward Disks

- Beam pipe model


Beampipe profile; 100 mm steps


The beam pipe radius has been modelled as a function of $z$ from the original CAD drawings

|  | Z-ePIC | R_bpipe | x_offset | R_inner | R_outer |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $5 n$ | -1350 | 41.08 | -5.30 | 46.1 | 430 |
| 4 n | -1000 | 35.76 | -1.81 | 40.8 | 430 |
| $3 n$ | -700 | 31.76 | 0.00 | 36.8 | 430 |
| 2 n | -450 | 31.76 | 0.00 | 36.8 | 430 |
| 1 n | -250 | 31.76 | 0.00 | 36.8 | 230 |
| 1 p | 250 | 31.76 | 0.00 | 36.8 | 230 |
| 2 p | 450 | 31.76 | 0.00 | 36.8 | 430 |
| $3 p$ | 700 | 32.86 | 0.56 | 37.9 | 430 |
| 4 p | 1000 | 40.58 | 7.85 | 45.6 | 430 |
| $5 p$ | 1350 | 49.12 | 16.02 | 54.2 | 430 |

Dimensions are mm

## Forward and Backward Disks

- Beam pipe model



The beam pipe radius has been modelled as a
WARNING: some disk positions ( $3 n / 4 n / 5 n$ ) have changed since this work was done.

This configuration is still valid if the mRICH is used in the BW region.
The smaller envelop in slide 3 is needed if the pfRICH is used.
This study will be updated, but in the meantime these positions are still $\quad 230$ perfectly valid to kick-off the engineering studies.

| $3 p$ | 700 | 32.86 | 0.56 | 37.9 | 430 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $4 p$ | 1000 | 40.58 | 7.85 | 45.6 | 430 |
| $5 p$ | 1350 | 49.12 | 16.02 | 54.2 | 430 |

Beampipe profile; 100 mm steps
Dimensions are mm

## Disk Tiling

- More details on the disks tiling study and methods in the backup and here https://indico.bnl.gov/event/17073/

EIC-SVT Disk-1 Tile
r_bp = beam pipe radius
$r_{\_}$min $=r_{-} b p+5 \mathrm{~mm}$
$r_{\text {_max }}=$ outer disk radius
r_low = smallest radius with full acceptance
r_high = largest radius with full acceptance
TX: $\mathrm{YY}(1 \times \mathrm{X}) \rightarrow$ on the disk there are YY Tiles made of one stitched row of $X$ reticules.

Example: T5: $12(1 \times 5) \rightarrow$ on the disk there are 12 tiles made of one stitched row of 5 reticules (i.e. $18.85 \mathrm{~mm} \times 150 \mathrm{~mm}$ ).


## Disk 1 - Tiling Options

EIC-SVT Disk-1 Tile


EIC-SVT Disk-1 Tile


60 sensors
228 reticles

Fewer connections
More coverage
Note \#1: no restriction on sensor variants but disk size imposes its own constraint Note \#2: lines indicate possible division of disk into two halves for assembly around the beam pipe

## Disk 2/3n - Tiling Options

## EIC-SVT Disk-2/3n Tile



156 sensors
912 reticles

EIC-SVT Disk-2/3n Tile


164 sensors
892 reticles

Fewer connections
More coverage
Note \#1: no restriction on sensor variants
Note \#2: Sensors in red on reverse side of disk overlap digital periphery of inner sensors in blue

## Disk 2/3n - Restricting Sensor Size

EIC-SVT Disk-2/3n Tile


148 sensors
896 reticles
Fewer, longer sensors T4 - T9

EIC-SVT Disk-2/3n Tile


192 sensors
892 reticles
More, shorter sensors T1 - T6

Use picket fence design as default for all disks.

## Disk2/3n - Varying Restriction on Sensor Size



EIC-SVT Disk-2/3n Tile


Use T4 - T9 as default for disks 2 to 5.

Greater prospect of reducing number of sensor types with the simple tiling design

However, the reduction in sensor types pushes periphery inwards, adding material due to flex cables running over the outer sensors at larger radii

[^0]
## Disk 3p

Note: disk center offset from $x=0$ to accommodate beam pipe fan out
EIC-SVT Disk-3p Tile


## Disk 4n/p

Note: disk center offset from $x=0$ to accommodate beam pipe fan out

EIC-SVT Disk-4n Tile


EIC-SVT Disk-4p Tile


## Disk 5n/p

Note: disk center offset from $x=0$ to accommodate beam pipe fan out

EIC-SVT Disk-5n Tile


## EIC-SVT Disk-5p Tile



## Summary - Disks v0.0

| BACKWARD |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 |
| Disk 1 | 4 | 4 | 4 | 8 | 12 | 20 | 0 | 0 | 0 |
| Disk 2 | 0 | 0 | 0 | 60 | 4 | 12 | 20 | 44 | 8 |
| Disk 3 | 0 | 0 | 0 | 60 | 4 | 12 | 20 | 44 | 8 |
| Disk 4 | 0 | 0 | 0 | 62 | 4 | 16 | 18 | 42 | 8 |
| Disk 5 | 0 | 0 | 0 | 64 | 2 | 16 | 20 | 40 | 8 |
| FORWARD |  |  |  |  |  |  |  |  |  |
|  | T1 1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 |
| Disk 1 | 4 | 4 | 4 | 8 | 12 | 20 | 0 | 0 | 0 |
| Disk 2 | 0 | 0 | 0 | 60 | 4 | 12 | 20 | 44 | 8 |
| Disk 3 | 0 | 0 | 0 | 62 | 2 | 12 | 20 | 44 | 8 |
| Disk 4 | 0 | 0 | 0 | 64 | 4 | 14 | 20 | 42 | 6 |
| Disk 5 | 0 | 0 | 0 | 62 | 4 | 14 | 24 | 38 | 8 |

## Mechanical Design as Implemented in DD4HEP

- Basic model for sagitta layers

44 tilted triangular staves (not 50 or 78)
Silicon + Al + carbon fiber plates
No truss structure; cooling pipes, etc.

- Support cone design issues

Routing of cables to/from first two vertex layers is assumed to be radially outwards

## Implies a 90 -degree bend in the FPC

No location identified for the patch panel needed to connect FPC to external cables

Length of vertex and sagitta layers does not include periphery or FPC

Radius of last disk is smaller than the radius of the support cone


Figures from Shujie Li (LBNL)

## More engineering challenges discussed in Nikki's talk.

## Summary

- Vertex Layers (L0, L1, L2)

Will use ITS3 wafer-scale sensors
L 2 now at $\mathrm{R}=120 \mathrm{~mm}$
$R 1-R 0=12 \mathrm{~mm}$
R2-R1 = 72 mm
For ITS3 the layer spacing is 6 mm
Requires new mechanical design

- Sagitta Layers (L3, L4)

L3 length ( 540 mm ) can be made with 2 sensors of length 270 mm (9 reticles)
L3 could also made with 3 sensors of length 180 mm (6 reticles) to improve wafer usage
Second option requires services running over the stave; also cooling for the periphery $\rightarrow$ First option as default for now
L4 length ( 840 mm ) can be made with 4 sensors of length 210 mm (7 reticles)
Same comment about services and cooling
Module concepts needed for L3 and L4

- Tiling of disks

Method to tile the disks developed
Vertical tiles (design \#1) are preferred
Fewer sensors providing greater coverage
Studies of restricted sensor sizes on-going
Need to convert this into estimate for the number of wafers needed (with inputs from designers)

- Mechanical Design

Need to investigate an ITS2-like stave option for the sagitta layers
Need to address cable routing, cooling and compatibility with EPIC support cone

No conceptual design the disks; not clear that air cooling will work here

## Conclusion

- The proposed configuration is based on

The ePIC SVT configuration for the first simulation campaign (Oct/Nov 2022).
A reticule size of $18.85 \mathrm{~mm} \times 30 \mathrm{~mm}$.
An exercise of how to best tile staves and disks using 1. and 2.

- This starting point is not yet informed by

Sensor yield (i.e. stitched rows of 9 reticules might not be possible) $\rightarrow$ biggest unknown!
Engineering aspects of staves/disks, mechanics, cooling, integration, etc.
Designers input on LAS.

## Let's use this configuration as starting point to work on some of these missing inputs and iterate on the SVT design with more information.

## Backup

## Disk Tiling Study

- Aim of the study

Investigate sensor (LAS) formats needed
Try to restrict the number of variants
Try to keep periphery to outer radius of disk

## - Tiling strategy

Two designs starting with a central cross
Design \#1 = vertical tiles/sensors (shown)
Design \#2 $=$ herringbone pattern (alternating vertical and horizontal tiles)

No sensor overlap on same side of disk
Sensor variants are assumed to be 1 reticle width by up to 9 reticle lengths

EIC-SVT Disk-1 Tile


Example: Disk 1
z = +/- 250 mm

## Disk Tiling Algorithm

EIC-SVT Disk-1 Tile


Central cross $=3$ sensors

## The algorithm

- Try to keep periphery to larger radii
- Two designs, each based on a central cross pattern smaller than the inner diameter of the disk
- Design \#1 = vertical tiles (shown)
- Design \#2 = herringbone pattern (alternating vertical and horizontal tiles)
- The minimum disk radius ( $r_{\mathrm{m}} \mathrm{min}$ ) is 5 mm larger than the beam pipe radius ( $r$ _bp) for bake out
- Sensor and periphery must be contained within the min and max radii of the disk ( $r_{-}$min and $r_{-}$max).
- For each disk, the algorithm calculates the smallest and largest radii with full acceptance (r_low and r_high)
- The algorithm does not permit any sensor overlap
- Acceptance at small radii could be improved by allowing some sensor overlap; placing overlapping sensors on the reverse side of the disk (in progress)
- Limits on the max and min sensor length can be applied
- Study the number of sensor variants that are needed


## Disk Tiling Method




[^0]:    EIC SC general meeting | ePIC SVI Iayout \| U/ Nov $20 \angle 2$

