Some engineering challenges with the EPIC SVT design

N. Apadula, G. Contin, G, Deptuch, D. Elia, L. Gonella, P. Jones, I. Sedgwick, E. Sichterman
EIC SC general meeting
November 7, 2022

- EPIC SVT layout developed for the first simulation campaign
- 5 barrel layers, 5 disks per side

Periphery not included

Current status

Goal: Minimize material, maximize acceptance

Stitched sizes

All layer lengths account only for active area

$$
\begin{aligned}
\mathrm{LO} & =4 \times 56.5 ; \mathrm{R}=36 \\
\mathrm{~L} 1 & =4 \times 75.5 ; \mathrm{R}=48 \\
\mathrm{~L} 2= & 8 \times 94.0 ; \mathrm{R}=120 \\
& \text { ePIC }- \text { SVT }
\end{aligned}
$$

Same 3 sensor formats:
LO $=3 \times 9$ reticles
L1 $=4 \times 9$ reticles
L2 $=5 \times 9$ reticles
1 sensor per wafer
4 or 8 sensors per layer

Note: radii and lengths work with a reticle size of $18.85 \times 30.00 \mathrm{~mm}^{2}$ Length of LO, L1 and L2 is made of one 270 mm sensor read out at ONE end Length of L3 is made of two 270 mm sensors read out at BOTH ends Length of L 4 is made of four 210 mm sensors read out at BOTH ends

Digital periphery estimated at 10 mm

Figures by Peter Jones

Barrel layers

- Layers 0-2
- Active area: 270 mm
- Silicon size: $\sim 280 \mathrm{~mm}$
- Layer 3
- Active area: 540 mm
- Silicon size: ~560 mm (back-toback length 9 sensors)
- Layer 4
- Active area: 840 mm
- Overlap sensors to avoid dead area

Note: radii and lengths work with a reticle size of $18.85 \times 30.00 \mathrm{~mm}^{2}$ Length of LO, L1 and L2 is made of one 270 mm sensor read out at ONE end Length of L3 is made of two 270 mm sensors read out at BOTH ends Length of L4 is made of four 210 mm sensors read out at BOTH ends

Periphery size estimated towards longer length

What does this mean for the geometry?

- Layers 0-2 not symmetric in $\mathrm{z} \rightarrow$ periphery \& FPC in forward direction
- Layer 3 is symmetric \rightarrow periphery \& FPC in both directions
- Layer 4 is symmetric \rightarrow periphery \& FPC along the sensor

Stitched sensors - layers o-2

Side view

ALICE plan: FPC curved to the same radius as the sensor

Stitched sensors - some unknowns

- Size of periphery
- Periphery on both ends of sensor?
- Liquid cooling for the periphery?
- Length, thickness, type of support?
- Length, thickness, shape of FPC?
- Bendability?

Barrel services

- In current design, services come directly out of active sensor area
- Up 90° from layers 0-2 and then projective (45°) from the inner layer support cylinder

Services cont.

- Need space for periphery \& FPC
- Sharp bend for the FPC in layers 0-2 is unlikely to be feasible
- Steps?
- Patch panel?
- Periphery cooling?
- How do we direct the air for layers 0-2?

Service routing changes
At these radii, this angle cuts through sensor

- Layers 0-2: extend out to patch panel? Make a gradual bend for the FPC?
- Layer 3: extend out slightly for periphery \& (likely) FPC extension? \rightarrow will change the angle of the service cone. Change the r to keep the service cone angle?

Summary/Other

- Goal: Minimize material, maximize acceptance
- Will need to divert from ALICE plans
- Layer 2 radius is much larger than ITS3 \rightarrow do we need another support cylinder between layers $1 \& 2$?
- How do we direct air to layers 0-2? \rightarrow not currently considered in material/support. Do we need to liquid cool the periphery?
- Actual sensor dimensions longer than shown in geometry \rightarrow does that require a change in the radii?
- FPC connections need to be taken into account \rightarrow what lengths? Can they be bent? Do they need additional support?

