Minimum set for key measurements for Detector-II: SIDIS processes

Charlotte Van Hulse

Detector 2 meeting November 8, 2022

SIDIS, in a nutshell

SIDIS, in a nutshell

SIDIS variables

• multi-dimensional binning in $x,Q^2,z,P_{h\perp},\phi_S,\phi$

SIDIS variables

- multi-dimensional binning in $x, Q^2, z, P_{h\perp}, \phi_S, \phi$
- reconstruction of variables via scattered lepton and/or detected hadrons

Reconstruction via scattered lepton (high y) and double-angle method (low y)

Can an e-side HCAL help?

Relative difference in Q²

with and without eHCAL

Can an e-side HCAL help?

Relative difference in Q² with and without eHCAL 0.0 -0. 0. 0.0 -0. 0.0 -0.1 0. 0.0 -0.1 0. 0.0 Absence/presence of EHCAL visible -0. 0.1 0.0 -0.1 for hadronic methods for x_B and Q^2 at high y 0. (where e-method works well) 0.0 -0. 0. 0.0 -0. 0.

Not very useful from that perspective

(x,Q²) coverage

5

Fit:

A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

SIDIS, coverage

- tracking
- hadron calorimeters (for jets)
- vertexing for heavy-flavour decays

 hadron reconstruction and identification over entire coverage -> PID detectors, separating electrons, pions, kaons and protons

Momentum coverage of hadrons

Need to reconstruct and identify hadrons for momenta down to ~0.1 GeV/c (in central region) and up to above 10 GeV (in forward region), depending on pseudo-rapidity region.

studies for ECCE

e-side HCAL : hit distributions

Fractional number of DIS events with signal in EHCAL (for particles without track)

E_ehcal>0.0 GeV: 15% E_ehcal>0.2 GeV: 12% E_ehcal>0.5 GeV: 7% E_ehcal>1.0 GeV: 3% E_ehcal>1.5 GeV: 2%

Resolutions

studies performed for ECCE reconstruction via e-method

3D spin-dependent momentum structure of the nucleon

Semi-inclusive measurements, with hadron reconstruction and pid down to low p_T (~100 MeV for π)

Sivers asymmetry

- Low x and Q²: asymmetry well below 1% \rightarrow need high precision
- TMD evolution

Decrease of asymmetry with increasing $Q^2 \rightarrow$ need high precision (<1%) to measure asymmetry at high Q^2

Uncertainties Sivers asymmetry

• Intermediate and high x:

- Beam polarisations set to 70%.
- systematic uncertainty=
- generated reconstructed
- additionally: 3% scale uncertainty

Influence of the magnetic field: example for ALL

• No change in kinematic coverage observed between 1.4 and 3.0 T magnet

Influence on statistical uncertainty:

 \rightarrow lower magnetic field brings some advantage at low x_B but 1.4 T or 3.0 T both appropriate

studies for ECCE

Summary

- SIDIS measurements require:
 - electron and hadron reconstruction and PID in $-4 \le \eta \le 4$
 - \rightarrow tracking detectors
 - \rightarrow particle identification to separate electrons, charged pions, kaons and protons Cherenkov radiation: medium to high-p range for e, π , K, p dE/dx low-p π, K, p TOF for low-to-medium-p π , K, p transition radiation for e/h with p> 2 GeV calorimeter for e/h separation
 - \rightarrow calorimeters for jet physics
 - \rightarrow good vertex, for heavy-flavour decays

resolution: studies required to quote minimum needed resolution, but ECCE-like detector satisfies needs

