Minimum set for key measurements for Detector-II: SIDIS processes

Charlotte Van Hulse

SIDIS, in a nutshell

SIDIS, in a nutshell

SIDIS variables

- multi-dimensional binning in $x, Q^{2}, z, P_{h \perp}, \phi_{S}, \phi$

SIDIS variables

- multi-dimensional binning in $x, Q^{2}, z, P_{h \perp}, \phi_{S}, \phi$
- reconstruction of variables via scattered lepton and/or detected hadrons

Can an e-side HCAL help?

Relative difference in Q^{2}
with and without eHCAL

Can an e-side HCAL help?

Relative difference in Q^{2}
with and without eHCAL

Absence/presence of EHCAL visible for hadronic methods for X_{B} and Q^{2} at high y (where e-method works well)

Not very useful from that perspective

(x, Q²) coverage

Fit:
A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated
by assumed
3\% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

SIDIS, coverage

- hadron reconstruction and identification over entire coverage \rightarrow PID detectors, separating electrons, pions, kaons and protons
- tracking
- hadron calorimeters (for jets)
- vertexing for heavy-flavour decays

Momentum coverage of hadrons

Need to reconstruct and identify hadrons for momenta down to $\sim 0.1 \mathrm{GeV} / \mathrm{c}$ (in central region) and up to above 10 GeV (in forward region), depending on pseudo-rapidity region.

e-side HCAL : hit distributions

Resolutions

studies performed for ECCE
reconstruction via e-method
studies for ECCE R. Seidl

3D spin-dependent momentum structure of the nucleon

Semi-inclusive measurements, with hadron reconstruction and pid down to low $\mathrm{p}_{\mathrm{T}}(\sim 100 \mathrm{MeV}$ for π)
Sivers asymmetry

- Low x and Q^{2} : asymmetry well below $1 \% \rightarrow$ need high precision
- TMD evolution

ECCE
Parametrisation: M. Bury et al., JHEP, 05:151, 2021

Decrease of asymmetry with increasing $\mathrm{Q}^{2} \rightarrow$ need high precision $(<1 \%)$ to measure asymmetry at high Q^{2}

Uncertainties Sivers asymmetry

- Beam polarisations set to 70\%.
- systematic uncertainty=
|generated - reconstructed|
- additionally: 3\% scale uncertainty
- Low x and Q^{2} : small statistical uncertainty.
- For not too large $\mathrm{P}_{\mathrm{T}}(\mathrm{and} \mathrm{z})$ statistical uncertainty well below 1%.
- Systematic uncertainties increase with P_{T} (and z) likely because of higher smearing effects.

- Intermediate and high x : good coverage in Q^{2}, complementarity at different COM energies.

Influence of the magnetic field: example for $A_{L L}$

- No change in kinematic coverage observed between 1.4 and 3.0 T magnet
- Influence on statistical uncertainty:
studies for ECCE

\rightarrow lower magnetic field brings some advantage at low X_{B} but 1.4 T or 3.0 T both appropriate

Summary

- SIDIS measurements require:
- electron and hadron reconstruction and PID in $-4 \leqslant \eta \leqslant 4$
\rightarrow tracking detectors
\rightarrow particle identification to separate electrons, charged pions, kaons and protons
Cherenkov radiation: medium to high-p range for e, π, K, p
dE/dx low-p m, K, p
TOF for low-to-medium-p π, K, p
transition radiation for e/h with $\mathrm{p}>2 \mathrm{GeV}$
calorimeter for e/h separation
\rightarrow calorimeters for jet physics
\rightarrow good vertex, for heavy-flavour decays
- resolution: studies required to quote minimum needed resolution, but ECCE-like detector satisfies needs

