²³⁵U Resolved Resonance Evaluation within CIELO Collaboration

M.T. Pigni

Oak Ridge National Laboratory Nuclear Data Criticality Safety Oak Ridge, TN

R. Capote, A. Trkov

International Atomic Energy Agency Nuclear Data Section Vienna, Austria

Mini-CSEWG Meeting Los Alamos National Laboratory April 2016

ORNL is managed by UT-Battelle for the US Department of Energy

INTRODUCTION (1)

- The current ORNL resonance evaluation o17 (ORNLv17) is an intermediate step of the evaluation process within CIELO
- The current o17 resonance evaluation started from a set of resonance parameters merged from i1 (IRSNv1) and i2 (IRSNv2)
 - **i2** was documented in the ORNL Report presentation at the CSEWG meeting (November 2015) and released after CSEWG.
- Particular emphasis in producing **o17** was devoted to
 - *sub-thermal* and *thermal* : Thermal Constants (Pronyaev, micro. data)
 - fission integrals (7.8-11 eV)
 - *neutron incident energies up to 30 eV* for measurements of $\alpha = \sigma_v / \sigma_f$
- The work to improve the fit of experimental data in the energy region above 100 eV is still in progress

INTRODUCTION (2)

- The current ORNL resonance evaluation o17 is generated by the SAMMY code using the Reich-Moore approximation
 - All SAMMY inputs included in the current evaluation procedure are written using the most recent key-word for particle-pair definitions.
 - Isotopic impurities included
 - Parameters for the resolution functions (crunch data, γ-peak) of transmission experimental data (J. A. Harvey) retrieved from ORELA logbook (special thanks to K. Guber).
- Residuals and chi-squared of all exper. data

* 7m.M * 5.0, 3 4-3 TYPE DATA	4 UN-E6 10.31.27 WUE ZEBBING C FILE BEING ZEB		Speak ley 2450 r	fore uns at in 19	C
* 740,44 * 2-1114- vend - 999 vend vent * 7111,14 * 2 * 711,14 * 2 * 711,14 * 2 * 711,14 * 2 * 4-3114- 110 * 75100	86 10.38.05 988650 E99 6 889 1 DSC -32 86 10.38.40	O ENU A CEP O DEC	0 104 0 115 10.676 12.17	-32 ~ 5290 D.	<u> </u> T
N.50 10676 P.48 75100 75108 75116 75124 75132 75140	0 0 467 934 228 117 3 1 1 0 0 0	0 0 1449 1744 64 33 0 0 0 0	0 0 1208 1591 14 12 1 0 0 1	0 1 1269 933 1 3 0 1 0 0	
+ 13,1 3	6 10.40.15 21701 113 11326 6 10.40.68	Ao 155166 0 11340	22761	n	
+ 8,1 I PARAMETE STARTING CHANGEG 0.1 400,4 155400.4 1016400.4 3016400.4 3016400.4 3016400.4	0 T8F 1.00 TTNE NUMBS 0000 95 0000 96 0000 90 0000 90 0000 90	00 NAN85502 0 GRUNGH 100 20 100 20 100 40 100 100 100 0 0 0	ND CLOCK THE STARTING SECTI CHANNEL, CHANN SEA 10384 100 10384 100 12384 234 23384 234 25384 251	011 171 000 1000 1000 1000	
125384 TAGS					

National Laboratory

Thermal Cross Sections and Integrals

- O17 values for fission and capture thermal cross sections are based on ²³⁵U(n,f) thermal constants obtained on the basis of *microscopic* data (i.e., only considering Wallner thermal capture measurements)
- Fission integral (I_4 in the Figure below) between 7.8 and 11 eV based on recommendation of Neutron Standards

Brooks (1966) experimental data sets

- Comments on the fit of Brooks' α measurements
 - converted to η

National Laboratory

Brooks (1966) experimental data sets

- Comments on the fit of Brooks' α measurements
 - Relation of normalization parameter between α and η

- N is driven by the fact η too high above 8 eV
 - Impact of the N on α is even more extreme
 - Impurities effect more evident

Summary of Brooks' a measurements (converted to n and not normalized)

Transmission data (Harvey) with updated resolution function and impurities

Summary and Conclusions

- We applied the R-matrix SAMMY method using the Reich-Moore approximation to determine a consistent set of neutron resonance parameters for ²³⁵U
- In the analyzed energy range up to 2.25 keV, the evaluation o17 is based on a previous release within the CIELO collaboration, namely i2a, merged version of i1 and i2. o17 (ORNLv17) did not try to improve experimental data above 100 eV.
- Updated inputs for SAMMY (particularly for resolution function parameters for Harvey transmission data)
 - Original ORELA data •
 - Inclusion of impurities (parameters taken from ENDF/B-VII.1) •
- Analysis of Brooks' α experimental data (four sets) converted to η in order to be fitted with SAMMY
 - Analysis on the impurities and normalization of Brooks data is still in progress •
 - Very likely a new resonance at E=5.46 eV •
- Constraint of the o17 evaluation are the standard thermal cross sections and the fission integral between 7.8-11 eV.
- The validation analysis on the thermal benchmarks showed good agreement with the experimental response and that the o17 resonance parameters are compatible with the current values of nubar (from thermal constants) and thermal PFNS (average energy 2.00+/- 0.01)

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy (DOE), Nuclear Criticality Safety Program (NCSP) funded and managed by the National Nuclear Security Administration for DOE.

Thank you!

