

New ¹⁶O Evaluation Based on R-Matrix Analysis of the ¹⁷O System

G. M. Hale and M. W. Paris T-2 Los Alamos National Laboratory

LA-UR-16-22419

Outline

- Reminder of R-matrix properties, EDA code
- Status of the ¹⁷O system analysis and ¹⁶O evaluation
 - Low-energy scattering cross sections
 - $~^{13}C(\alpha,n)$ and $~^{16}O(n,\alpha_0)$ cross sections
 - Fits, data renormalizations, etc.
 - Extension of the evaluation to higher energies
- Summary and conclusions

R-matrix Formalism

4/11/16

UNCLASSI

R-Matrix Theory Enforces Basic Properties of Scattering Theory

- 1) Unitarity ($SS^{\dagger} = S^{\dagger}S = 1$): enforced by R_B being real and symmetric ($H + \mathcal{L}_B$ hermitian).
- 2) Reciprocity (TRI): enforced by the symmetry of R_B and all asymptotic matrices (such as S) derived from it.
- 3) Causality: no poles of **S** in upper-half k-plane. Poles of **R**_L are all in the lower half-plane, at $k = k_0$ and $-k_0^*$.

Note that the MLBW approximation violates *all* of these basic principles.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Scheme and Properties of the EDA Code

Energy Dependent Analysis Code

- Accommodates general (spins, masses, charges) two-body channels
- Uses relativistic kinematics and R-matrix formulation
- Calculates general scattering observables for 2 →2 processes
- Has rather general data-handling capabilities (but not as general as, e.g., SAMMY)
- Uses modified variable-metric algorithm that gives parameter covariances at a solution

	channel	a _c (fm)	I _{max}	
	n+ ¹⁶ O	4.4	4	
	α+ ¹³ C	5.4	5	
Reaction	Energies (MeV)	# dat poin	ta ts	Data types
¹⁶ O(n,n) ¹⁶ O	$E_n = 0 - 7$	254	0 c	$\sigma_{T}, \sigma(\theta), P_{n}(\theta)$
¹⁶ O(n,α) ¹³ C	E _n = 2.35 –	5 67	2 σ	$T_{int}, \sigma(\theta), A_n(\theta)$
¹³ C(α,n) ¹⁶ O	$E_{\alpha} = 0 - 5.4$	87	0	σ_{int}
$^{13}C(\alpha, \alpha)^{13}C$	$E_{\alpha} = 2 - 5.7$	7 116	8	σ(θ)
total		525	0	8

 χ^2 per degree of freedom = 1.68

Total Cross Section Data

У 📕	_ /	5
1		
		1

Authors (n,n):	Energy Range	Energy Shift	Normalization
Schneider	0.0253 eV	0	1.0 (fixed)
Dilg,Koester,Block	0.13 – 23.5 keV	0	1.0 (fixed)
Ohkubo (corr. for H)	0.8 – 935 keV	0	0.9989
Johnson & Fowler (including LOX)	49 – 3139 keV	0	0.9799
Cierjacks et al.	3.143 – 7.0 MeV	0	1.0378

Authors (α,n):	Energy Range	Energy Shift	Normalization
Drotleff et al.	346 – 1389 keV	0	1.0 (fixed)
Heil et al.	416–899 keV	0	1.0 (fixed)
Kellogg	445–1045 keV	0	1.506
Bair and Haas	0.997–5.402 MeV	-4 keV	0.9410

Integrated (total) Cross Sections

 $\sigma_{T}^{}\left(b\right)$

n+¹⁶O Elastic Scattering Cross Section

70

Giorginis' Analysis of (α ,n) Measurements

- Considered two measurements, Bair and Haas (B&H73) and Harissopulos *et al.* (Har05).
- Determined a preliminary cross-section scale for B&H73 based on the integral of the thick-target yield over the narrow resonance at 1.056 MeV that agrees with the published scale of Har05.
- Then applied a correction common to both data sets related to characterization of the ¹³C target that gives the cross-section scales 0.95×B&H73 and ~1.42×Har05.
- Considers the relative shape of the B&H73 measurement to be the most accurate since it had the thinnest target.

¹³C(α ,n)¹⁶O Cross Section

¹⁶O(n, α_0)¹³C Cross Section

n+¹⁶O Elastic Cross Section

n+¹⁶O Total Cross Section

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED 4/11/16

Capture Cross Section

Summary and Conclusions

- R-matrix descriptions are constrained by fundamental properties (unitarity, causality, TRI) of nuclear reaction theory.
- EDA analysis of the ¹⁷O system includes data from all possible reactions, giving results that are highly constrained by the properties above (especially unitarity).
- The low-energy n+¹⁶O scattering cross sections are now in better agreement with high-precision measurements, and the (n,α_0) cross section agrees with the data of B&H73, IRMM07 (Giorginis).
- The evaluated ¹⁶O file Cielo 3/16 extends to 150 MeV, and is the same as ENDF/B VII.1 above 9 MeV (except for capture).

