

LFHCal electronic proposal Norbert Novitzky (ORNL) National Laboratory

Electron-Ion Collider

Jefferson Lab (Content of Energy Science) Science

Readout electronics requirements

Figure 11.134: Possible scheme for the EIC Readout Architecture

EIC Yellow Report, 2103.05419

AI/ML tools can be implemented to further enhance the detector performance

Yellow report place requirements on the readout system:

- Streaming readout:
 - Calorimeters usually are not streaming (ALICE, sPHENIX)
- Online reconstruction of events:
 - Online four-vector reconstruction and PID of particles

Requirements:

- SiPM readout:
 - 60 pF to 5 nF capacitance
- Large dynamic range >= 14-bit:
 - 2.5 MeV to 100 GeV
- ASIC signal amplification, processing, readout
 - Cost effective
 - Has to be radiation tolerant
 - Compact

Electron-Ion Collider

H2GCROC3 architecture

Existing ASIC for CMS, ALICE detectors

Overall chip divided in two symmetrical parts:

- One half is made of:
 - 39 channels (in CMS 36 channels, 1 Calib, 2 CMN)
 - Bandgap, voltage reference close to the edge
 - Bias, ADC reference, Master TDC in the middle
 - Main digital block and 3 differential outputs (2 trigger, 1 data)

Measurements:

- Charge:
 - ADC peak measurement, 10 bits at 40 MHz, different gain setups possible, 0.4fC resolution
 - TDC: (Time over Threshold), 12 bits, 2.5fC resolution
- Time:
 - Time of arrival, 10 bits (25ps)

Data flow:

- DAQ path:
 - 512 dept RAM1, circular buffer
 - Secondary RAM2, 32 dept
 - Store all channel data, ADC, TOA, TOT
 - Output 2x 1.28 Gbps links
- Trigger path:
 - Sum of 4 or 9 channels, linearization, compression to 7bits

dimme

• 4 x 1.28 Gbps links

Control:

- Fast commands, 40MHz and 320MHz clock
- I2C for slow control

.

HGCROC use in EIC

There are 5 different phases of the signal sampled with the 40 MHz clock:

- The new version of the H2GCROCv3 can read out multiple consecutive bunch crossings
- For good signal reconstruction, we plan to save 3 (or 4) samples for each signal
- Total: 3 ADC, 3 TOA and 3 TOT values, 32bitx3 words for each physics signal

Signal from the shapers:

- SiPM response of the H2GCROCv3 (from CMS)
- Default configuration used

Can it be used with the EIC 100 MHz clock?

We can reconstruct the phases (using TOA) and the shower shape

ADC data and noise

Two 10-bit DAC to globally set the pedestal to desired level (minimum) 5-bit reduce the dispersion from individual channels

Very good linearity < 1%

• 1.6 fC linearity (~1 MIP) for the typical gain

0.3 fC resolution on 50 pF input capacitor

.

ch14		ch6
ch32		ch24
ch17	-	ch7
ch35	-	ch25
ch15		ch8
ch33	-	ch26
ch0		ch9
ch18		ch27
ch1		ch10
ch19		ch28
ch2		ch11
ch20		ch29
ch3		ch12
ch21		ch30
ch4		ch13
ch22	-	ch31
ch5		ch16
ch23	_	ch34
Charles,		

TOT range

Once the ADC is saturated, the TOT takes over:

Range in silicon is 160 fC to 10pC, in SiPM 16pC to 320pC 50 ps binning

Very good linearity in the ToT:

- preamplifier input
- fixed)

•

Calibration of the detector

Summer

The data is obtained with the HGCROCv2 in PS 2022 June with silicon sensor

In addition, the H2GCROCv3 contains:

- 6-bit current conveyor to adjust the SiPM bias voltage:
 - Adjust the voltage for individual channels
- Different preamp settings

Cd (pF)	5, 10, 20	At the conveyor output and at the preamp input ensure the preamp stability.
Rf (Ω)	25K, 50K, 66.66K, 100K	In parallel, these resistors provide 15 values to adjusted with the Cf and Cf_comp values to get desired decay time constant.
Cf (fF)	50, 100, 200, 400	Combined with the Cf_comp capacitors, provide gain of the preamplifier.
Cf_comp (fF)	50, 100, 200, 400	Same purpose than Cf capacitors but connected differently to improve the preamplifier stability gain point-of-view can be considered in parallel capacitors.

Table 1.1: Values for Rf, Cf and Cd

Electron-Ion Collider

ADC

70

- - Streaming readout towards the EPIC DAQ system

Electron-Ion Collider

Internal Calibration Circuit

Dynamic range of the HGCROC:

- Real data from the v2 chip
- Silicon variant
- ADC set to saturate around 850:
 - Small dip in the ADC happens when the TOT circuit comes online
 - TOT values are shown only to 100 (out of the 4095 range)
 - TOA have a small walk from threshold to 0.18 fC, then it is stable

We are currently working on the same data for the H2GCROCv3 chip

Internal Calibration circuit implemented in the H2GCROCv3:

- 0.5 pF Low Range: 0 0.5 pC
- 8 pF High Range: 0- 8 pC

Calibration circuit injection value of 11-bit:

Can be used to identify the thresholds for TOA and TOT,

check linearity, etc.

Placement, mechanics

Placement of the Readout Board (RDO)

Option C: (with EFC only) FPGA in rack off detector

•

Very compact design **Radiation tolerant** Low power (2W/ASIC) Cost effective

FEB EFC

Electron-Ion Collide

IDC iborate	GE ory
Fibe	r
Fiber	•
•	
r	•

Cable options for the LVDS links

Twinax cables look ok

A. <u>https://www.samtec.com/products/erdp</u>

- ERF8 and ERM8 connectors
- B. <u>https://www.samtec.com/products/eqdp</u>
 - QTE-DP and QSE-DP connectors
- C. https://www.samtec.com/produc ts/hqdp
 - QTH-DP and QSH-DP connectors

oss (dB)

(mho) Diff Impedance

Electron-Ion Collider

Planned R&D needed to extend to more detectors

The list of calorimeters in EPIC:

- **LFHCAL** 64k
- **FEMC 19k**
- **Barrel EMCal:**
 - SciGlass 9k
 - Imaging calorimeter 4k for SiPM
- Barrel HCal 1.5 k or 7.7 k
- EEEMC 3k
- **Backward HCal 16k**

Why would we want to use this ASIC?

- Large radiation tolerance (for years)
- 20 euro/chip (need 1100 of them for LFHCal)

• Low power consumption (20mW/channel, 2kW for LFHCAL) Which detectors need a preamplifier on FEB?

H2GCROC3 R&D:

- First data is almost ready to present (ongoing)
- First test beam planned in March-April with PS/SPS at CERN with SiPM
- Investigation of multiple SiPM inputs (4x4 array planned to use in SciGlass)

One ASIC over all Epic calorimeters

Chip on testboard at ORNL. Started working on it at ORNL

Paris-Omega team offered further development of the chip if we need

Electron-Ion Collider

Summary

Multiple experiments plan to use the ASIC:

- HGCAL at CMS
- FoCal at ALICE (ORNL is involved in this project)
- The ASIC already exists and @ ORNL

Initial investigation shows the H2GCROC3 would be capable at EIC (without modification):

- Signal shape can be sampled at 40 MHz
 - 3-4 samples are enough
 - 5 possible phases
- Consistent with streaming readout requirement
- Proposed architecture on the readout scheme

H2GCROC3 provides:

For all SiPM readout

Test in 20

- 22-bit dynamic range (10 ADC, 12 TOT):
 - Different gain setups to accommodate wide range of s
- Internal calibration circuit
- Providing timing information
 - TOA could help in timing of the calorimeters primary identify
 - Need further study for track matching, combining with timing detectors

	 Yellow report place requirements on the readout system Streaming readout: Calorimeters usually are not streaming (ALICE, sPHENIX) Online reconstruction of events: Online four-vector reconstruction and PID of particle 	
023	 Requirements: SiPM readout: 60 pF to 5 nF capacitance Large dynamic range >= 14-bit: 	
sensitivities	 2.5 MeV to 100 GeV ASIC - signal amplification, processing and readout Readout 50 kHz 	

Electron-Ion Collider

ו:

es

A lot of additional documents can be found: <u>https://cernbox.cern.ch/s/IQTGIIjPwnQyjQx</u>

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Implementation for other detectors

On-detector SiPM + ASIC + FC already discussed:

• FEB is RadHard, can be adopted to all calorimeter readout

Off-detector readout electronics:

- Only SiPM on the detector
- An amplifier is needed on the detector (R&D is needed)
- FEB+RDU is combined off the detector

For detectors avoiding ASICs on the FEB (Heating, cabling or other consideration)

TOA with the 5 phases

Identification of EIC phase with the TOA? This is just estimation based on some of the knowledge of the chip

High injection

10²