Pion rejection factor in SciGlass ECal

Renee Fatemi, Dmitry Kalinkin

University of Kentucky

Scintillation quenching

Scintillation quenching without optical simulations in G4

When measuring deposited energy one does not expect to be sensitive to scintillation effects, yet:

- » Birks' law correction is enabled by DD4hep for detectors processed with Geant4ScintillatorCalorimeterAction: see Geant4SDActions.cpp of DD4hep – This uses optional Geant4 facilities
- » Log message "### Birks coefficients for Geant4 materials" should be a good indicator that Birks' constants are applied see Geant4StepHandler.cpp of DD4hep, see G4EmSaturation.cc of G4
- » Calorimeters are Geant4ScintillatorCalorimeterAction by default DDG4 INFO +++ EcalBarrel type:calorimeter --> Sensitive type: Geant4ScintillatorCalorimeterAction
- » Official production log have those messages \Rightarrow Birks' law is applied to SciGlass!
- » Constant value of 0.0333 mm/MeV is not measured, taken from PbWO4

Birks's law effect on pion rejection

Pion rejection: energy dependency

Erratum for last presentation

Bug in previously shown results

https://indico.bnl.gov/event/17706/

Minor issue with the "without other detectors" curve:

- » Was supposed to remove all detectors other than calorimeter and keep the magnetic field
- » Configuration files from "no gaps" were used by accident with the intended "epic_sciglass_only" configuration
- » As a result, detectors were removed, but calorimeter was simulated without gaps and without magnetic field

Pion rejection: energy dependency

Corrected slides uploaded back to Indico.

Proto-clustering for pion rejection

Pion rejection (0.10 GeV)

- » sum all towers sum of raw E_{dep.} for all 7920 towers
- » sum towers in 3x3 around leading sum of raw $E_{dep.}$ 9 towers around the one with the highest energy

Pion rejection (0.20 GeV)

- » sum all towers sum of raw E_{dep.} for all 7920 towers
- » sum towers in 3x3 around leading sum of raw $E_{dep.}$ 9 towers around the one with the highest energy

Pion rejection (0.50 GeV)

» sum all towers - sum of raw $E_{dep.}$ for all 7920 towers

» sum towers in 3x3 around leading - sum of raw $E_{dep.}$ 9 towers around the one with the highest energy

Pion rejection (1.00 GeV)

- » sum all towers sum of raw E_{dep.} for all 7920 towers
- » sum towers in 3x3 around leading sum of raw $E_{dep.}$ 9 towers around the one with the highest energy

Pion rejection (2.00 GeV)

» sum all towers - sum of raw E_{dep.} for all 7920 towers

» sum towers in 3x3 around leading - sum of raw $E_{dep.}$ 9 towers around the one with the highest energy

Pion rejection (5.00 GeV)

- » sum all towers sum of raw E_{dep.} for all 7920 towers
- » sum towers in 3x3 around leading sum of raw $E_{dep.}$ 9 towers around the one with the highest energy

Pion rejection (10.00 GeV)

- » sum all towers sum of raw $E_{dep.}$ for all 7920 towers
- » sum towers in 3x3 around leading sum of raw $E_{dep.}$ 9 towers around the one with the highest energy

Pion rejection (20.00 GeV)

- » sum all towers sum of raw $E_{dep.}$ for all 7920 towers
- » sum towers in 3x3 around leading sum of raw $E_{dep.}$ 9 towers around the one with the highest energy

Pion rejection: energy dependency

