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Principles of RF acceleration (1)
• An RF cavity produces a time-varying electric field across an accelerating gap.

• The RF frequency must be in sync with the bunched beam in order to accelerate and ensure phase stability.

• In a ring, the RF frequency should be a multiple of the revolution frequency, frf = hf0.

P. Ostroumov (2018)
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Types of the accelerators* 

6/25/2017 V. Yakovlev | RF Accelerating Structures, 25-27 September, 20188

¾ An accelerated particle passes the same gap many times (cyclic 
accelerator).

*P. Ostroumov,  “Introduction to accelerators,” PHY862 Accelerator Systems, 2018 

RF fields in the gap(s): E(t) =E0 cos(ωt)

ωt=2πm, m=0,1,2…

Accelerating gap

Bunches

ω = ΩNq;

ω is RF frequency,
Ω is the bunch revolution frequency,
N is number of bunches
q=1,2,3…



Principles of RF acceleration (2)
• Each particle gains energy according to 
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• Define a reference particle which arrives at the RF cavity at phase φs. For stability, want early and late 
arriving particles to move towards the synchronous phase.

• Particles that arrive at a different time (or phase) gain a different energy ΔΕ, and as a consequence, take a 
different time to reach the next cavity.
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RF Acceptance versus Synchronous Phase 

The areas of stable motion 
(closed trajectories) are 
called “BUCKET”. The 
number of circulating 
buckets is equal to “h”.

The phase extension of the 
bucket is maximum for 
fs =180º (or 0°) which 
means no acceleration.

During acceleration, the 
buckets get smaller, both 
in length and energy 
acceptance.

=> Injection preferably 
without acceleration.
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DE, Dp/p

f

Emittance: phase space area including 
all the particles 

NB: if the emittance contour correspond to a 
possible orbit in phase space, its shape does not 
change with time (matched beam) 

DE, Dp/p

f

acceleration

deceleration

move 
backward

move 
forward

The particle trajectory in the 
phase space (Dp/p, f) describes 
its longitudinal motion.

reference

Longitudinal phase space

The energy – phase oscillations can be drawn in phase space:
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Dt (or f)

DE higher energy

late arrival

lower energy

early arrival

Particle B oscillates around particle A

This is a synchrotron oscillation

Plotting this motion in longitudinal phase space gives:

Longitudinal Phase Space Motion



Revolution time for off-momentum particle
•  Define the phase slip η and momentum compaction factor αp
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Νote: From relativistic momentum p=γm0v, can show,   

Longitudinal Dynamics in a Dipole

Now consider just the longitudinal part of the transfer matrix

for a single dipole. If the initial horizontal and vertical

coordinates and momenta are zero, then the linear map is:

∆δ = 0 (15)

∆z =

(

L

β20γ
2
0

−
ωL− sinωL

ωβ20

)

δ (16)

Note that if
L

β20γ
2
0

<
ωL− sinωL

ωβ20
(17)

then a particle with energy higher than the reference energy

slips back with respect to the reference particle; i.e. higher

energy particles effectively travel more slowly. This is a

consequence of the dispersion, the fact that higher energy

particles take a longer path through the dipole than lower

energy particles.

Linear Dynamics, Lecture 7 14 Longitudinal Dynamics

Longitudinal Dynamics in a Dipole

A particle with positive energy deviation (δ > 0) follows a

longer trajectory in the dipole than a particle on the reference

trajectory. If the particles enter with the same z, and the

energy is sufficiently large (both particles travel close to the

speed of light), the higher energy particle falls behind the

particle with the reference energy.

Linear Dynamics, Lecture 7 15 Longitudinal Dynamics

where T is the revolution time (T=C/v), C is the path length and p the momentum. One can writep

 

It follows

or



Phase stability
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A. Bogacz
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Equations of motion

• Relative to the reference particle one can write
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Longitudinal Hamiltonian
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• The longitudinal equations of motion follow in terms of phase space coordinates (φ,δ).

Note: δ=dp/p

• Small amplitude synchrotron motion is simple harmonic with synchrotron tune Qs

• When |φ-φs| is small, 

Note: if η<0, require 0< φs < π/2 while if η>0 the stable fixed point moves to π-φs. 



Hamiltonian contours
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φs = 20°

π - φs

φs = 0°

Stationary bucket Moving bucket

• Stable fixed point at (φs,0).
• Unstable fixed point at (π-φs,0)
• Separatrix defined by contour H(π-φs,0).
• Bucket height and area maximum at φs = 0°

Assumed phase slip η<0 here.

• The area within the separatrix is known as a ‘RF bucket’.
• Phase acceptance given by maxima of scaled potential term U.



RF buckets for various η,φs
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Fig. 2 Phasing of moving and stationary buckets relative to RP voltage 

Choice of φs
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• Bucket area is greatest when �s = 0
or ⇡, and falls to zero when �s =

1
2⇡

• Choosing �s is a design compromise
between:

– �s = 1
2⇡ with maximum accel-

eration; and

– �s = 0 or ⇡, with the largest
stable areas but zero accelera-
tion

• Typical choices giving reasonable
bucket area and acceleration are
�s ⇠ 30� or 150�

Note canonical variables are W -� where W = �E/!0 (not E). The buckets
are centred on the synchronous particle and rise in Es as the beam accelerates.

Also W -� area is conserved by Liouville’s Theorem, but not �E-�
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• Βucket area greatest for φs=0 or π and falls to zero for φs= π/2.
• Synchronous phase is at φs or π- φs depending on sign of η.

C. Prior



Adiabaticity
• If the RF parameters are changed at a slow rate with respect to the lowest frequency of oscillation, the process 

can be said to be adiabatic

• The adiabaticity parameter ε should be much lower than 1

• The longitudinal motion is conservative (i.e., there is no energy dissipation effect like synchrotron radiation). 
Liouville’s theorem states that the local density of particles in the longitudinal phase plane is always constant is 
applicable. An implicit consequence is that any RF gymnastics is in principle reversible.  
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Synchrotron - Bdot
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sin⇥s ⇥
93.5 kV
V0(t)

sin(2�ft) 0 � t � 10 ms

Peak voltage V0(t) has to be modulated so that RHS is less than 1.
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Credit: C. Prior

RF cycle in ISIS

From the magnetic rigidity, write the time derivative

Use following relativistic relation

Energy gain per revolution 

Case of a sinusoid ramping field

f=50Hz, R=26m, B0=0.26T, ρ=7m 



Phase space during ISIS acceleration
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Simulation of the ISIS 
acceleration cycle, 
showing the 
formation of the 
double oscillation 
centre and merging 
to give the final beam 
on target.

33

Credit: C. Prior

• RF waveform includes a 2nd harmonic.
• This flattens the line density, reduces peak current 

and so transverse space charge forces.



Acceleration in a scaling FFA 

14
T. Uesugi



Acceleration in a scaling FFA - example
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• 11-150 MeV KURNS FFA.
• The synchronous phase is normally 20°.
• In the example above, synchronous phase is brought to zero in 0.5ms to park the beam at some energy (and radius).



Phase jump in a scaling FFA
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Bunch monitor heat map

• 40 degree phase jump applied
• Longitudinal tomography reconstructs the 

distribution at various points.

Initial distribution before jump Immediately after jump

1000 turns after jump 1750 turns after jump



Beam stacking
• Successive beam pulses are stored in the ring. Coasting beams are stacked in terms of energy 

• In order to minimize the final emittance, the process should be adiabatic.

• Stacked bunches are allowed to debunch and coast. 
• In rings limited by transverse space charge at injection, beam stacking at higher energies allow a 

higher current beam to be accumulated and then extracted (but at lower repetition rate).

17
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Phase displacement acceleration

• Accelerating bucket will cause, on average, a downward shift in the energy of the coasting beam it 
moves through (the opposite is true in the case of a decelerating bucket). 

• In the adiabatic limit, the phase area moving downwards equals the bucket area moving up. This 
implies the following average shift in energy. 

18

• The theory of phase displacement acceleration was developed at MURA in the 1950s. It was used at 
the CERN ISR to accelerate coasting proton beams from 26.6-31.1 GeV in 200 RF bucket sweeps.



Scattering & bucket lift

• Consider the statistical distribution of scattering of individual particles by RF modulation. First 
treatment by Symon & Sessler at MURA^. Further developed at the ISR*. The rms momentum spread 
caused by the passage of single bucket is given by#. 

19

^ K. R. Symon and A. M. Sessler CERN Symposium on High-Energy Accelerators, 1956.
* E. W. Messerschmid, ”Scattering of particles by phase displacement acceleration in storage rings”, CERN/ISR-TH/73-31
# S. Watanabe et al, “Beam stacking experiments at the ion accumulation ring TARN”, NIM A271 (1988) 359-374

• Where Γ = sin φs. Note σsingle = Γ A/(2π α(φs)). For n stacked beams the total rms momentum spread is  

• If fstack/frf = m/n then the RF may affect the stacked beam. In the case of “bucket lift” some of the stacked beam is 
trapped and accelerated in a subharmonic bucket.



Phase displacement

20



Movies
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Φs=5° Φs=10°

Distance between horizontal lines is 



Stacking process
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• Assume a beam has already been stacked  
and is coasting (blue).

• Inject a second bunch (orange) and 
accelerate to just below the coasting beam.

• Ensure φs is zero at final energy.
• Debunch adiabatically.



Capture the stacked, coasting beam
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• Capture the beam by linearly increasing the RF voltage from zero to 22kV in 1000 turns.
• Beam free time created for extraction kicker.



Fixed RF Acceleration

• Some applications require fixed RF parameters as well as DC magnetic fields.
• For example, to accelerate particles with a short lifetime (e.g. muons) there may be not enough time to 

change either the magnetic field or the RF voltage of frequency.
• Applications that require cw operation, for example an Accelerator-Driven Subcritical Reactor (ADSR) also 

need fixed RF acceleration.

24

Methods

Acceleration in a stationary bucket

Acceleration in the serpentine channel

Harmonic number jump



Acceleration in a Stationary Bucket

• Inject beam into the bottom of bucket. Half a synchrotron oscillation later it will reach the extraction energy.

• The available energy gain is limited by the bucket height (proportional to 𝑉/𝐸). 

25

24 CHAPTER 2. RADIO FREQUENCY ACCELERATION

Figure 2.7: Schematic view of a fixed rf acceleration scheme. A beam is

injected at the bottom of a stationary bucket. Then the injected beam is

accelerated in the stationary bucket. When the beam reaches the top of its

energy, it is extracted from the stationary bucket. The synchronous energy

is Es, and maximum energy gain is presented by �Emax from injection to

extraction.
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Credit: E. Yamakawa, T. Planche

6 turn acceleration in  3.6 – 12.6 GeV scaling FFA 
with 1.8GV RF voltage



Hamiltonian in a scaling hFFA

• When we want to look at the longitudinal phase space spanning the transition energy, the linear approximation in 
dp/p no longer suffices.

• Instead write the Hamiltonian without referring to a reference energy.
• Note how the radius and hence the revolution frequency scales with momentum in a scaling hFFA 

26
Credit: E. Yamakawa thesis

• The phase equation of motion follows from above leading to the Hamiltonian



Longitudinal phase space close to transition
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32
CHAPTER 3. SERPENTINE ACCELERATION IN SCALING FFAG

ACCELERATOR

Figure 3.1: Revolution frequency and its energy of a non-synchronous parti-

cle. Lorentz factor �t is the transition gamma. Lorentz factor �s1 corresponds

to the stationary energy which is below the transition energy. Lorentz factor

�s2 corresponds to the other stationary energy which is above the transition

energy. Energy deviations between Es1 and Es2 are indicated by ��.
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3.3.1 Separated stationary buckets

When the rf frequency is fixed far away from the transition energy, two

stationary buckets are separated as shown in Fig. 3.2. In this case, serpentine

channel does not appear. Then, beam can be accelerated stably only in

stationary buckets. Since the stationary energy Es2 above the transition

energy is bigger than the stationary energy Es1 below the transition energy,

the bucket height over the transition energy is bigger than the bucket height

below the transition energy.

Phase [deg]
0 100 200 300 400 500 600 700

�

20

40

60

80

100

120

140

160

180

!t

Figure 3.2: Longitudinal phase space with longitudinal hamiltonian contours.

Lorentz factor �t is the transition gamma. The blue and red contours are the

separatrices above and below the transition energy. The synchronous phase

below the transition energy is 2n⇡ (n is an integer) and unstable fixed points

are (2n + 1)⇡ (n is an integer). On the other hand, the synchronous phases

above the transition energy are (2n + 1)⇡ (n is an integer). Unstable fixed

points are 2n⇡ (n is an integer) in this case.
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Credit: E. Yamakawa thesis
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ACCELERATOR

3.3.2 Near the transition energy

When the rf frequency is fixed near the transition energy, two stationary

energies, Es1 and Es2, are close to each other as shown in Fig. 3.3. When

Es1 and Es2 get closer, the serpentine channel appears between the two sta-

tionary buckets as shown in Fig. 3.4. When the rf frequency is fixed much

nearer the transition energy, eventually both stationary energies are equal

to the transition energy, Es1 = Es2 = Et. Then, two stationary energies are

overlapped to the transition energy as shown in Fig. 3.5.

As presented in Fig. 3.4, since beams can be accelerated with serpentine

channel, the total energy gain from injection to extraction is larger than

the stationary bucket acceleration. Furthermore, since fixed rf frequency is

applied for beam acceleration, we can use a high-quality cavity called high-Q

cavity where power loss in the cavity is smaller. Thus, big rf voltage can be

obtained compared to the modulated type of rf frequency cavity. Details of

a rf cavity is discussed in Appendix B.
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Figure 3.3: Longitudinal phase space. Lorentz factor �t is the transition

energy. Blue contour indicates separatrix.
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Figure 3.4: Longitudinal phase space near the transition energy. Blue and

red lines indicate the separatrices above and below the transition energy.
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Figure 3.5: Longitudinal phase space near the transition energy. Blue and

red lines indicate the separatrices above and below the transition energy.
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Figure 3.4: Longitudinal phase space near the transition energy. Blue and

red lines indicate the separatrices above and below the transition energy.
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Figure 3.5: Longitudinal phase space near the transition energy. Blue and

red lines indicate the separatrices above and below the transition energy.
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Frf

Serpentine channel γs1= γs2= γt

Separate buckets

Set RF frequency to determine how close 
synchronous energies are to transition  



Serpentine acceleration in non-relativistic regime

28
Credit: E. Yamakawa thesis

253 MeV

683 MeV

3.4. FEATURES OF SERPENTINE ACCELERATION 37

Table 3.1: Longitudinal parameters
k-value 1.1

Transition gamma 1.45

Equivalent mean radius at � = 1.21 [m] 10

Stationary gamma below transition 1.27

Rf voltage [MV/turn] 50 (h=1)

Rf frequency [MHz] 2.8(h=1)

3.4 Features of serpentine acceleration

Features of serpentine acceleration are studied in this section. First, the

relation between the stationary energy Es1 below the transition energy and

the other stationary energy Es2 above the transition energy are expressed.

Then lower limit of the rf voltage to make a serpentine channel is derived

from the longitudinal hamiltonian analytically. Total acceleration energy

gain and phase acceptance of serpentine acceleration are finally discussed.

3.4.1 Stationary energies and k-value

Let us start from deriving the relation between both stationary energies Es1

and Es2. Synchronous particles below and above the transition energy have

the same revolution frequency expressed as

�s1

Cs1
=

�s2

Cs2
, (3.19)

where �s1 and �s2 are the Lorentz factor corresponding to the stationary

energies Es1 and Es2 respectively, and Cs1 and Cs2 are circumferences of the

synchronous particles. Correlation between the stationary energies Es1 and

Es2 are obtained by solving Eq. 3.19 as

Es1P
↵�1
s1 = Es2P

↵�1
s2 , (3.20)

with the momentum compaction factor ↵, the rest mass m and the stationary

momentum Ps1 and Ps2 below and above the transition energy respectively.

Once we determine one stationary energy and k-value, the other station-

ary energy is obtained from Eq. 3.20. The energy di↵erence between the

37

421 MeV

Inject a bunch at 80MeV. Track 22 turns to the top of the 
serpentine channel. Mean energy at extraction is 1 GeV.



Serpentine acceleration in linear non-scaling FFA
• Linear non-scaling FFAs consist of dipoles and quadrupoles only (or just shifted quadrupoles). 
• Lattice is designed so that the revolution time is quadratic over the momentum range.
• Serpentine acceleration was experimentally demonstrated in EMMA.

29
Credit: JS Berg

The EMMA Lattice
J. Scott Berg

Brookhaven National Laboratory, P. O. Box 5000, Upton, NY 11973-5000

Abstract. EMMA is a 10 to 20 MeV electron ring designed to test our understanding of beam dynamics in a relativistic linear
non-scaling fixed field alternating gradient accelerator (FFAG). I will give a basic review of the EMMA lattice parameters.
Then I will review the different lattice configurations that we would like to have for EMMA. Finally, I will briefly discuss the
process of commissioning each lattice configuration.
Keywords: non-scaling fixed field alternating gradient accelerator
PACS: 29.20.-c,29.27.-a,41.85.-p
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FIGURE 1. Tune as a function of energy for two different
lattice configurations.

PURPOSE OF EMMA

EMMA will be the first non-scaling FFAG ever built.
It will study the dynamics in linear non-scaling FFAGs
at relativistic energies with rapid acceleration (around
10 turns) using high-frequency RF cavities. This is the
configuration one would find when accelerating muons
to the energies in a neutrino factory.
There are two important characteristics of this type of

FFAG that will be studied in EMMA. First, since the tune
varies with energy (see Fig. 1), one accelerates rapidly
through a number of resonances (although “resonance”
may not be precisely the correct word due to the high rate
of acceleration). Second, in longitudinal phase space, one
sees a “serpentine” behavior [1, 2, 3, 4] (see Fig. 2). The
machine will study

• Emittance growth in the machine, and how it varies
with which resonances are crossed
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FIGURE 2. A bunch in longitudinal phase space for serpen-
tine acceleration.

• How the longitudinal dynamics varies with machine
parameters

• Effects of longitudinal-transverse coupling
• The effect of errors

THE BASIC MACHINE PARAMETERS

The EMMA lattice was previously described in [5, 6]. I
will briefly review its characteristics.
Its basic machine parameters are shown in Tab. 1. The

magnetic lattice consists of identical doublet cells with
combined function magnets. The combined-function
magnetic fields are created by displacing a quadrupole
magnet. To be able to independently vary the dipole and
quadrupole fields, the magnets are placed on horizontal
sliders. The magnet doublet is shown in Fig. 3. The ma-
chine is furthermore capable of varying the RF frequen-
cies of the cavities over a small range. This range of vari-
ability will allow the lattice to be precisely tuned and will

TABLE 1. Basic machine parameters.
Minimum kinetic energy 10 MeV
Maximum kinetic energy 20 MeV
Approximate RF frequency 1.3 GHz
Lattice cells 42
RF cavities 19
Lattice type Doublet
Normalized transverse acceptance 3 mm
Nominal long drift length 210.000 mm
Nominal short drift length 50.000 mm
Nominal D magnet length 75.699 mm
Nominal F magnet length 58.782 mm

FIGURE 3. One of the EMMA doublets, shown sideways.

permit us to study a number of lattice configurations to
confirm our understanding of the underlying beam dy-
namics. The range of parameters required for all lattice
configurations are shown in Tab. 2.

LATTICE CONFIGURATIONS

The lattice configuration will be changed so that we
can study the effect of resonances and the longitudinal
dynamics in the machine. In the process, we will also
confirm that we understand the relationship between the

TABLE 2. Range of machine parameters required for all
configurations.

D F Cavity

Central axis shift
Minimum (mm) 28.751 4.903 0.439
Maximum (mm) 48.559 10.212 0.439
Aperture radius (mm) 55.975 31.850 34.751

Vacuum chamber apertures
Minimum horiz. (mm) -7.416 -21.638 -16.936
Maximum horiz. (mm) 18.789 20.700 17.814
Half height (mm) 11.676 8.906 10.571
Max. gradient (T/m) -4.843 6.847 —

RF parameters
Min. freq. offset (kHz) — — -4019
Max. freq. offset (kHz) — — 1554
Max. ring voltage (kV) — — 2286
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FIGURE 4. Single-cell tune for all energies for four different
lattice configurations. Low energy has higher tune.
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FIGURE 5. Time of flight as a function of energy for three
different RF frequencies. Zero time of flight deviation is when
the particle on the closed orbit at that energy is synchronized
with the RF. The actual time of flight doesn’t change between
curves, only the RF frequency changes.

parameters that we vary and the energy-dependent linear
lattice characteristics.
We will change lattice configurations so as to vary

which low-order single-cell resonances the beam will
cross during the acceleration process. Figure 4 shows the
various tune ranges we are proposing to study. The differ-
ent configurations cross different numbers of sextupole-
driven resonances.
We will vary the RF frequency to adjust the energies at

which the beam is synchronized with the RF, as shown in
Fig. 5. Figure 6 shows the effect that this variations is ex-
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Figure 4 | Longitudinal phase space trajectories of beams with five different initial phases. All of these cases clearly demonstrate acceleration within the
serpentine channel. The phase values were measured directly, whereas the momentum values were reconstructed using the polynomial fits described in
Figs 2 and 3. a, Momentum estimated from horizontal beam position. b, Momentum estimated from horizontal betatron tune variation. c, Momentum
estimated from vertical betatron tune variation. The solid and dashed grey curves indicate the best estimates of the separatrix boundary between in-bucket
motion and the serpentine channel, calculated using the lower and upper bounds respectively of the estimated systematic error of ±25 ps in the orbital
period measurement in Fig. 1.
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Figure 5 | Standard deviation of beam orbit oscillations in the horizontal and vertical planes, calculated at each cell using a twenty-one cell window.
Results are shown for the first five turns of acceleration, for the five reconstructed trajectories in the serpentine channel in Fig. 4. a, Trajectory with red data,
b, yellow data, c, green data, d, blue data, and e, magenta data. In all cases there is no significant growth in oscillation amplitude.

of 0.0480 Tm is required to bend a beam extracted at the fifth
turn by 43�, thus demonstrating acceleration from 12.5± 0.1 to
19.2±1.0MeV/c, corresponding to 12.0±0.1 to 18.4±1.0MeV/c
in equivalent momentum. The uncertainty of the extracted beam
momentum is an upper bound given by the angular acceptance of
the extraction line vacuum aperture.

During acceleration the cell tune changes by more than 0.1 in
both horizontal and vertical planes. This implies that the total ring
tune changes bymore than 4.2, so that a beammust cross an integer
tune a minimum of four times. In spite of this traversal of integer
tunes, the BPM signals show no significant growth in beam centroid
oscillation, as shown in Fig. 5.

Stable acceleration in the linear non-scaling FFAG EMMA
has been successfully demonstrated. A detailed analysis further
indicates that the beam is accelerated in a serpentine channel from
12.0MeV/c to more than 18.0MeV/c within six turns, with a small
orbit shift of 10mm. During acceleration the beam traverses several
integer tunes in the horizontal and vertical planes without any
observed growth in beam oscillation amplitude.

This very rapid acceleration has direct implications for the
design of future muon accelerators. Furthermore, these results
encourage further exploration of non-scaling FFAGs for a broad
range of proton and ion accelerator applications. The practical

realization of the non-scaling FFAG opens up new possibilities
in the design and application of future accelerators, with the
potential for widespread impact in many areas of science,
technology and medicine. One example is the ongoing Particle
Accelerator for MEdicaL Applications (PAMELA) project7, which
uses non-scaling FFAGs as a proton and carbon-ion source for
charged-particle therapy.
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if voltage is high enough and 
slippage is tuned well.

frf/2

frf = h · f(Es)

Let us recall

Synchronous energy          is not unique, 
because h can be any integer.

Es

Stable fixed point

There are many stable fixed points, 
corresponding to h=1,2,3,4,…

frf/3

Y. Mori, “Harmotron”, in this workshop.

Acceleration across different h’s is possible, 

frf
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Harmonic Number Jump
• Harmonic number h is increased on each 

turn to keep particles synchronised with 
fixed-frequency RF 
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FIXED-FREQUENCY II: HARMONIC NUMBER JUMP 
HNJ is a technique where the harmonic number h 
({�Worbit/Wrf) is increased by an integer on each turn 
(often 'K�  � ��� – originally devised by Veksler 
������� IRU� HOHFWURQV� LQ� D� IL[HG-frequency 
microtron, so that as the orbit radius increased, 
Worbit remained a harmonic of the fixed Wrf.  
Planche, Mori et al. have also simulated this method for a 3.6-���� GeV 
muon FFAG with ��� GV/turn at ��� MHz, giving ���-turn acceleration. 
The practical challenge is to provide the correct energy gain each turn. 
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 Initial and final transverse emittances Initial (blue) and final (red) transverse emittances

Acceleration from 3-12 GeV in 
8.5 turns

C. Prior


