Longitudinal Beam Dynamics

David Kelliher (RAL/ISIS/STFC)

FFA'23 school, Thomas Jefferson National Accelerator Facility

Contents

- Basics of longitudinal beam dynamics
- Beam stacking
- Fixed RF acceleration

Principles of RF acceleration (1)

- An RF cavity produces a time-varying electric field across an accelerating gap.
- The RF frequency must be in sync with the bunched beam in order to accelerate and ensure phase stability.
- In a ring, the RF frequency should be a multiple of the revolution frequency, $\mathrm{f}_{\mathrm{rf}}=\mathrm{hf}_{\mathrm{o}}$.

Principles of RF acceleration (2)

- Each particle gains energy according to

$$
\Delta E=q V \sin \omega t
$$

- Define a reference particle which arrives at the RF cavity at phase ϕ_{s}. For stability, want early and late arriving particles to move towards the synchronous phase.
- Particles that arrive at a different time (or phase) gain a different energy ΔE, and as a consequence, take a different time to reach the next cavity.

Revolution time for off-momentum particle

- Define the phase slip η and momentum compaction factor α

$$
\frac{d T}{T}=\eta \frac{d p}{p} \quad \alpha_{p}=\frac{d C / C}{d p / p}
$$

where T is the revolution time $(T=C / v), C$ is the path length and p the momentum. One can write

$$
\frac{d T}{T}=\frac{d C}{C}-\frac{d v}{v}=\left(\alpha_{c}-\frac{1}{\gamma^{2}}\right) \frac{d p}{p}
$$

It follows

$$
\eta=\left(\alpha_{c}-\frac{1}{\gamma^{2}}\right) \quad \text { or } \quad \eta=\left(\frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}}\right)
$$

Phase stability

Below transition

Above transition

$\eta_{p}<0$	$\alpha_{p}<0$ or $\gamma_{0}^{2}<\frac{1}{\alpha_{p}}$	Below Transition revolution frequency increases with increasing energy
$\eta_{p}=0$	$\gamma_{0}^{2}=\frac{1}{\alpha_{p}}$	At Transition revolution frequency independent of energy
$\eta_{p}>0$	$\gamma_{0}^{2}>\frac{1}{\alpha_{p}}$	Above Transition revolution frequency decreases with increasing energy

Equations of motion

- Relative to the reference particle one can write

$$
\begin{aligned}
& \delta \Delta E=\Delta E-\Delta E_{s}=q V\left(\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s}\right) \\
& \delta \Delta \phi=h \omega \Delta T=h \omega T_{s} \frac{\Delta T}{T_{s}}=h \omega T_{s} \eta \frac{\Delta p}{p_{s}}=h \omega T_{s} \frac{\eta}{\beta^{2}} \frac{\Delta E}{E_{s}}
\end{aligned}
$$

Emittance: phase space area including all the particles

Longitudinal Hamiltonian

$$
H=\frac{1}{2} h \omega_{0} \eta \delta^{2}+\frac{\omega_{0} e V}{2 \pi \beta^{2} E_{0}}\left[\cos \phi-\cos \phi_{s}+\left(\phi-\phi_{s}\right) \sin \phi_{s}\right]
$$

- The longitudinal equations of motion follow in terms of phase space coordinates (ϕ, δ).

$$
\dot{\phi}=\frac{\partial H}{\partial \delta}=h \omega_{0} \eta \delta, \dot{\delta}=-\frac{\partial H}{\partial \phi}=\frac{\omega_{0} e V}{2 \pi \beta^{2} E}\left[\sin \phi-\sin \phi_{s}\right]
$$

- When $\left|\phi-\phi_{s}\right|$ is small,

$$
\dot{\delta} \approx \frac{\omega_{0} e V \cos \phi_{s}}{2 \pi \beta^{2} E_{0}}\left(\phi-\phi_{s}\right)
$$

- Small amplitude synchrotron motion is simple harmonic with synchrotron tune Q_{s}

$$
Q_{s}=\sqrt{-\frac{h \eta \cos \phi_{s} e V}{2 \pi \beta^{2} E}} \quad \omega_{s}=Q_{s} \omega_{0}
$$

Note: if $\eta<0$, require $0<\phi_{s}<\pi / 2$ while if $\eta>0$ the stable fixed point moves to $\pi-\phi_{s}$.

$B . H .=2 \sqrt{\frac{e V}{2 \pi \beta^{2} E h|\eta|}} Y\left(\phi_{s}\right)$

- Stable fixed point at ($\phi_{s}, 0$).
- Unstable fixed point at ($\pi-\phi_{s}, 0$)
- Separatrix defined by contour $\mathrm{H}\left(\pi-\phi_{s}, 0\right)$.
- Bucket height and area maximum at $\phi_{\mathrm{s}}=0^{\circ}$

- The area within the separatrix is known as a 'RF bucket'.
- Phase acceptance given by maxima of scaled potential term U.

$$
U=\left[\cos \phi-\cos \phi_{s}+\left(\phi-\phi_{s}\right) \sin \phi_{s}\right]
$$

RF buckets for various η, ϕ_{s}

(a) $\eta<0, \quad Y<\gamma$
acceleration

C. Prior
(b) $\eta<0, \quad Y<Y_{1}$
deceleration

- Bucket area greatest for $\phi_{s}=0$ or π and falls to zero for $\phi_{s}=\pi / 2$.
- Synchronous phase is at ϕ_{s} or $\pi-\phi_{s}$ depending on sign of η.

Adiabaticity

- If the RF parameters are changed at a slow rate with respect to the lowest frequency of oscillation, the process can be said to be adiabatic
- The adiabaticity parameter ε should be much lower than 1

$$
\epsilon=\frac{1}{\omega_{s}^{2}} \frac{\partial \omega_{s}}{d t} \ll 1
$$

- The longitudinal motion is conservative (i.e., there is no energy dissipation effect like synchrotron radiation). Liouville's theorem states that the local density of particles in the longitudinal phase plane is always constant is applicable. An implicit consequence is that any RF gymnastics is in principle reversible.

Standard map

- http://www.toddsatogata.net/2019-USPAS/lab/Standard.html

$$
\begin{aligned}
& \text { until done }\{ \\
& d=\operatorname{sqrt}\left(2.0^{*}\left(1.0-\cos \left(2^{*} \mathrm{pi}^{*} \mathrm{Qs}\right)\right)\right) \\
& q=q+0.5^{*} d^{*} p
\end{aligned}
$$

Synchrotron - Bdot

From the magnetic rigidity, write the time derivative

$$
\frac{p}{q}=B \rho \quad \frac{d p}{d t}=q \rho \dot{B}
$$

Use following relativistic relation $\frac{d E}{d t}=\frac{p c^{2}}{E} \frac{d p}{d t}$
Energy gain per revolution $V \sin \phi_{s}=\frac{2 \pi R}{\beta c} \frac{1}{q} \frac{d E}{d t}=2 \pi R \rho \dot{B}$

$$
\sin \phi_{s}=\frac{2 \pi R \rho}{V(t)} \dot{B}=\frac{2 \pi R \rho}{V(t)} \times 2 \pi f B_{0} \sin 2 \pi f t
$$

Case of a sinusoid ramping field

Phase space during ISIS acceleration

- RF waveform includes a $2^{\text {nd }}$ harmonic.
- This flattens the line density, reduces peak current and so transverse space charge forces.

Acceleration in a scaling FFA

Rf frequency determines the synchronous energy.

$$
h \cdot f\left(E_{s}\right)=f_{r f}
$$

Synchronous phase is determined by the synchronous energy gain per turn, or, the ramping rate of rf frequency.

$$
\begin{aligned}
q V \sin \phi_{s} & =\frac{\mathrm{d} E_{s}}{\mathrm{~d} N}=\frac{1}{f} \frac{\mathrm{~d} E_{s}}{\mathrm{~d} t} \\
& =\frac{1}{f_{r f}} \frac{1}{\left(\mathrm{~d} f / \mathrm{d} E_{s}\right)} \frac{\mathrm{d} f_{r f}}{\mathrm{~d} t}
\end{aligned}
$$

(ϕ_{s}, E_{s}) is a stable fixed point
general particle

$$
\begin{aligned}
\phi & =\phi_{s}+\delta \phi \\
E & =E_{s}+\delta E
\end{aligned}
$$

Acceleration in a scaling FFA - example

- 11-150 MeV KURNS FFA.
- The synchronous phase is normally 20°.
- In the example above, synchronous phase is brought to zero in 0.5 ms to park the beam at some energy (and radius).

Phase jump in a scaling FFA

- 40 degree phase jump applied
- Longitudinal tomography reconstructs the distribution at various points.

Initial distribution before jump

1000 turns after jump

Immediately after jump

1750 turns after jump

Beam stacking

- Successive beam pulses are stored in the ring. Coasting beams are stacked in terms of energy
- In order to minimize the final emittance, the process should be adiabatic.
- Stacked bunches are allowed to debunch and coast.
- In rings limited by transverse space charge at injection, beam stacking at higher energies allow a higher current beam to be accumulated and then extracted (but at lower repetition rate).

40 ms
$N=4$

Phase displacement acceleration

- Accelerating bucket will cause, on average, a downward shift in the energy of the coasting beam it moves through (the opposite is true in the case of a decelerating bucket).
- In the adiabatic limit, the phase area moving downwards equals the bucket area moving up. This implies the following average shift in energy.

$$
\Delta E_{\text {shift }}=\frac{\omega_{0} A}{2 \pi}
$$

- The theory of phase displacement acceleration was developed at MURA in the 1950 s. It was used at the CERN ISR to accelerate coasting proton beams from $26.6-31.1 \mathrm{GeV}$ in 200 RF bucket sweeps.

Scattering \& bucket lift

- Consider the statistical distribution of scattering of individual particles by RF modulation. First treatment by Symon \& Sessler at MURA^. Further developed at the ISR*. The rms momentum spread caused by the passage of single bucket is given by ${ }^{\#}$.

$$
\sigma_{\text {single }}=\frac{16}{(2 \pi)^{3 / 2}} \Gamma\left(\phi_{s}\right) \sqrt{\frac{e V E}{h|\eta|}}
$$

- Where $\Gamma=\sin \phi_{s}$. Note $\sigma_{\text {single }}=\Gamma A /\left(2 \pi \alpha\left(\phi_{s}\right)\right)$. For n stacked beams the total rms momentum spread is

$$
\Sigma_{n}=\left(\sigma_{0}^{2}+n \sigma_{\text {single }}^{2}\right)^{0.5}
$$

- If $f_{s t a c k} / f_{r f}=m / n$ then the RF may affect the stacked beam. In the case of "bucket lift" some of the stacked beam is trapped and accelerated in a subharmonic bucket.
${ }^{\wedge}$ K. R. Symon and A. M. Sessler CERN Symposium on High-Energy Accelerators, 1956.
* E. W. Messerschmid, "Scattering of particles by phase displacement acceleration in storage rings", CERN/ISR-TH/73-31
\# S. Watanabe et al, "Beam stacking experiments at the ion accumulation ring TARN", NIM A271 (1988) 359-374

Phase displacement

Movies

Distance between horizontal lines is $\Delta E_{\text {shift }}=\frac{\omega_{0} A}{2 \pi}$

Stacking process

- Assume a beam has already been stacked and is coasting (blue).
- Inject a second bunch (orange) and accelerate to just below the coasting beam.
- Ensure ϕ_{s} is zero at final energy.
- Debunch adiabatically.

Capture the stacked, coasting beam

- Capture the beam by linearly increasing the RF voltage from zero to 22 kV in 1000 turns.
- Beam free time created for extraction kicker.

RF Knockout

- Finite dispersion at the RF cavity results in an effective dipole kick.
- When the RF frequency and the betatron frequency satisfy a rational relationship, a resonance can occur.
- The effects was studied during the MURA years!

$$
Q_{x}+m Q_{d r}=n \quad \text { where } \quad Q_{d r}=\frac{\omega_{r e v}-\omega_{r f}}{\omega_{r e v}}
$$

Fixed RF Acceleration

- Some applications require fixed RF parameters as well as DC magnetic fields.
- For example, to accelerate particles with a short lifetime (e.g. muons) there may be not enough time to change either the magnetic field or the RF voltage of frequency.
- Applications that require cw operation, for example an Accelerator-Driven Subcritical Reactor (ADSR) also need fixed RF acceleration.

Methods

Acceleration in a stationary bucket
Acceleration in the serpentine channel
Harmonic number jump

Acceleration in a Stationary Bucket

- Inject beam into the bottom of bucket. Half a synchrotron oscillation later it will reach the extraction energy.
- The available energy gain is limited by the bucket height (proportional to $\sqrt{V / E}$).

6 turn acceleration in $3.6-12.6 \mathrm{GeV}$ scaling FFA with 1.8 GV RF voltage

Hamiltonian in a scaling hFFA

- When we want to look at the longitudinal phase space spanning the transition energy, the linear approximation in $d p / p$ no longer suffices.
- Instead write the Hamiltonian without referring to a reference energy.
- Note how the radius and hence the revolution frequency scales with momentum in a scaling hFFA

$$
r=r_{0}\left(\frac{p}{p_{0}}\right)^{\frac{1}{k+1}} \quad \alpha=\frac{d r / r}{d p / p}=\frac{1}{k+1} \quad \frac{T}{T_{s}}=\left(\frac{r}{r_{s}}\right) / \frac{p / E}{p_{s} / E_{s}}=\left(\frac{p}{p_{s}}\right)^{\alpha} / \frac{p / E}{p_{s} / E_{s}}
$$

- The phase equation of motion follows from above leading to the Hamiltonian

$$
H(E, \phi ; \theta)=h\left[\frac{1}{\alpha+1} \frac{p^{\alpha+1}}{E_{s} p_{s}^{\alpha-1}}-E\right]+\frac{e V}{2 \pi} \cos \phi
$$

Longitudinal phase space close to transition

Set RF frequency to determine how close synchronous energies are to transition

Serpentine acceleration in non-relativistic regime

Inject a bunch at 80 MeV . Track 22 turns to the top of the serpentine channel. Mean energy at extraction is 1 GeV .

Serpentine acceleration in linear non-scaling FFA

- Linear non-scaling FFAs consist of dipoles and quadrupoles only (or just shifted quadrupoles).
- Lattice is designed so that the revolution time is quadratic over the momentum range.
- Serpentine acceleration was experimentally demonstrated in EMMA.

FIGURE 5. Time of flight as a function of energy for three different RF frequencies. Zero time of flight deviation is when the particle on the closed orbit at that energy is synchronized with the RF. The actual time of flight doesn't change between curves, only the RF frequency changes.

FIGURE 2. A bunch in longitudinal phase space for serpentine acceleration.

Harmonic Number Jump

Azimuthal position

Let us recall

$$
f_{r f}=h \cdot f\left(E_{s}\right)
$$

Synchronous energy E_{s} is not unique, because h can be any integer.
Frequency
Acceleration across different h's is possible,
if voltage is high enough and slippage is tuned well.

- Harmonic number h is increased on each turn to keep particles synchronised with fixed-frequency RF

$$
\tau_{\text {orbit }}=h \tau_{\mathrm{rf}}
$$

$$
\left.\begin{array}{l}
\tau_{\text {orbit }} \rightarrow \tau_{\text {orbit }}+\Delta \tau \\
h \rightarrow h+\Delta h
\end{array}\right\}
$$

$\Longrightarrow \Delta \tau=\Delta h \tau_{\mathrm{rf}} \quad(\Delta h$ often 1$)$

Acceleration from $3-12 \mathrm{GeV}$ in
8.5 turns

Initial (blue) and final (red) transverse emittances

