Constant-Tune Cyclotrons FFA Workshop 2023

Thomas Planche

℀TRIUMF

- Introduction
- How to design a practical cyclotron magnet "orbits first"
- Proof of principle magnet design: ASTOR [Joho, 1983]
- Further work

Isochronous condition:

$$\mathcal{R} = \beta \mathcal{R}_{\infty}$$

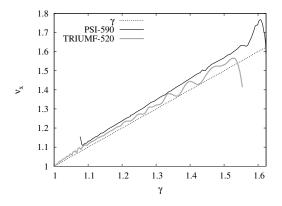
where \mathcal{R} is the circumference of the closed orbit divided by 2π , and \mathcal{R}_{∞} is a constant.

The integral of the relative error can never exceed the ratio between a quarter of the rf period and the total time of flight from injection: on the order of 10^{-4} or less, for most cyclotrons. Stray away from this strict condition, and no more beam will come out of the machine.

There is no analytical solution^{*} for an isochronous $B(r, \theta)$. Producing an isochronous field distributions is the job of the magnet designer: iterative process that takes many iterations, and on the order of days.

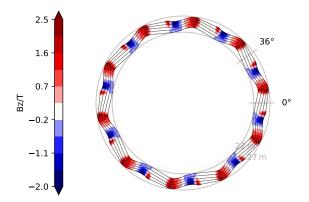
*Except for the case B(r), which is out of question: unstable vertical motion.

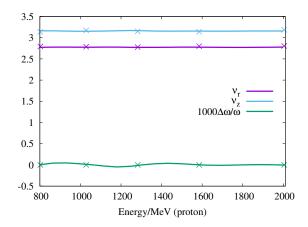
Thomas Planche (TRIUMF)


FFA Workshop 2023

For lack of an analytical formula, there is a way to generate a perfectly isochronous (and Maxwellian) field distribution in a split second using a trick I presented at the cyclotron conference in 2019 [Planche, 2019].

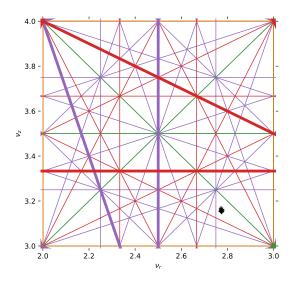
The trick, in a nutshell, is to start from the geometry of a set of **closed orbits** to derive the **tunes** and the **field** distribution.

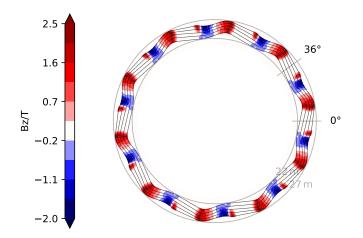

closed orbits \rightarrow tunes \rightarrow field


which is circular permutation of the more conventional order in which things are normally done. The work I am presenting here is depends heavily on this trick. The two "most-relivistic" cyclotrons ever built:

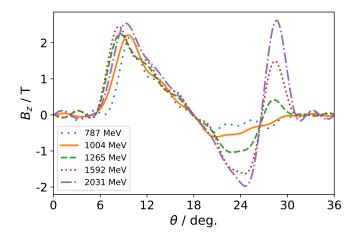
In a cyclotron, does ν_x necessarily follows γ ? Are higher-energy cyclotrons doomed to cross many resonances?

I have shown last year that there exists isochronous fixed field distributions (consistent with Maxwell's equations) that produce constant vertical and horizontal tunes. I had for instance shown the example of a 2 GeV proton cyclotron:





<u>Solid lines</u>: tracking result using CYCLOPS [Gordon, 1984]. <u>Crosses</u>: from the geometry of the closed orbits using from_orbit.

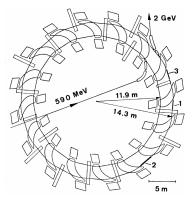

Thomas Planche (TRIUMF)

FFA Workshop 2023

 $r(a, \theta)$ is parametrized so as to have drift sections between sectors.

Magnetic field plotted along 5 closed orbits.

- All this work has been written up in an article that is part is part of a recent ICFA special issue on cyclotrons [Planche, 2023], if you are interested.
- The question that remains is: how can one use this technique in practice to design accelerator magnets?

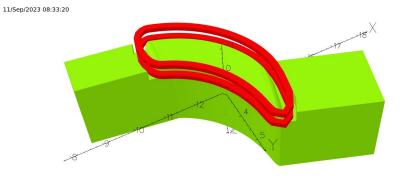

I needed to start from less arbitrary, more practical orbits.

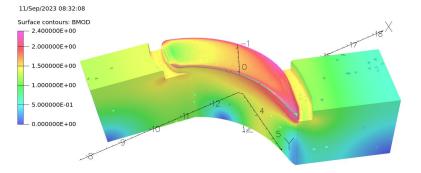
Process:

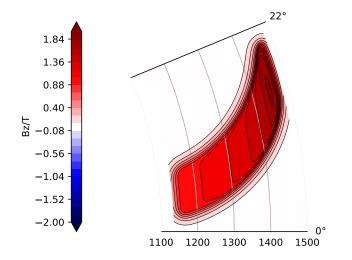
- Get a field map from some initial 3-D magnet model (OPERA-3D).
- **2** Track particles to find the corresponding closed orbits (CYCLOPS).
- Use from_orbit to figure out what transformation (shift, scale) need to be applied to these obits to achieve the desired tunes.
- Applying the same transformations to the magnet geometry.
- Iterate.

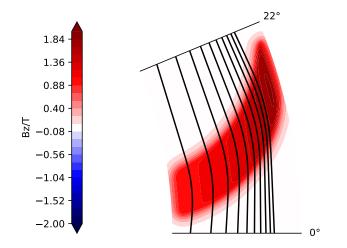
I went on a bit of wild-goose chase to automate fully the construction and post-processing of OPERA-3D model. The result is a python library developed in collaboration with Shinji's group (ISIS Neutron and Muon Source) and my post-doc Huiwen, **see Ta-Jen's talk on Thursday**.

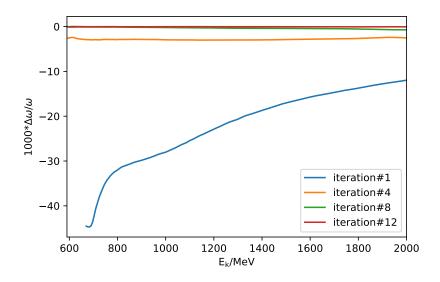
I chose to design a magnet for W. Joho 2 GeV cyclotron proposal: ASTOR [Joho, 1983].

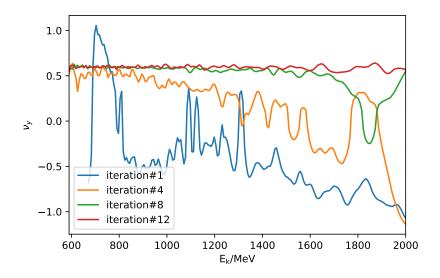

and to start with designing so that only ν_y is constant at first.

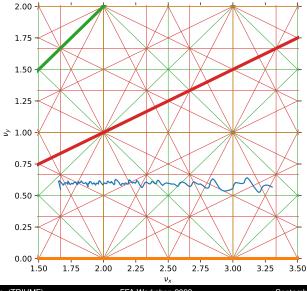

Thomas Planche (TRIUMF)

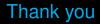

FFA Workshop 2023


For each iteration:


- I run OPERA-3D, and get a field map.
- With this field, I run CYCLOPS [Gordon, 1984] to get a set of closed orbits.
- With these orbits, I run from_orbit and shift every orbit azimuthaly until I get a constant vertical tune.
- I extract a new magnetic field profile, and a new spiral angle profile, and adjust the magnet gap height and spiral shape accordingly.







Next step is to design for both ν_x and ν_y constant at the same time. This will require a reversed bend.

from_orbit can be coupled with a 3-dimensional finite element code like OPERA-3D to design fixed-field accelerator magnets.

It allows the design to converge extremely rapidly. I am using it to design cyclotron magnets, but the technique can be applied to design any FFA magnet (not VFFA though).

Thank you for your attention

Bibliography:

Gordon, M. (1984).

Computation of closed orbits and basic focusing properties for sector-focused cyclotrons and the design of CYCLOPS.

Part. Accel., 16:39-62.

Joho, W. (1983).

ASTOR, concept of a combined acceleration and storage ring for the production of intense pulsed or

continuous beams of neutrinos, pions, muons, kaons and neutrons

IEEE Trans, Nucl. Sci. (Proc. PAC'83), 30(4):2083-2085.

Planche, T. (2019).

Designing Cyclotrons and Fixed Field Accelerators From Their Orbits.

In Proc. of Int. Conf. on Cvclotrons and their Applications (Cyclotrons'19), page FRB01.

Planche, T. (2023).

Constant-tune cyclotrons.

Journal of Instrumentation, 18(03):P03019.