

Science and Technology **Facilities Council**

Design study for RAL FETS-FFA

Shinji Machida UKRI/STFC Rutherford Appleton Laboratory

14 September 2023 FFA workshop at J-lab

Outline

- Goal
- Optics update
- Higher energy extension
- Space charge effects
- RF knock-out and its mitigation
- Hardware
- Summary

Science and Technology Facilities Council

Our project goal

- high intensity operation.
- It will not have high current (no instability), but space
- experiment.

FETS-FFA at RAL will be the first demonstrator FFA for

charge tune shift is the same level of SNS and J-PARC. Mitigation of beam loss is one of the main purpose of the

FETS-FFA: Front End Test Stand FFA

Science and Technology Facilities Council

Optics update

Optics baseline fixed

- Novel lattice with
 - FD(DF) spiral
 - Superperiod structure
- Large dynamic aperture

Technology **Facilities Council**

Figure 2.8: 3 MeV and 12 MeV orbits for 16 operating points.

Novel lattice DF(FD) spiral

1) $k = \frac{r}{B} \frac{dB}{dr}$	2) B_d/B_f
------------------------------------	--------------

Flexibility of operating point (transverse tune) is essential for high intensity operation (Qh ~ Qv).

radial sector

Alternating gradient focusing by focusing (normal bend) and defocusing (reserve bend)

400 keV radial sector Science and Technology Facilities Council

Novel lattice Superperiod structure

For high intensity operation, enough space for injection and extraction is essential.

16-fold symmetry

Straight length: 0.95 m

Spiral angle: 45 degree

Field index k: 8.00

Magnet families: 2

Dynamic aperture: 110 pi mm mrad

4-fold symmetry

Straight length: **1.55 m**, 0.90 m, 0.45 m Dynamic aperture: 80 pi mm mrad Field index k: 7.40 Spiral angle: 30 degree Magnet families: 8

Horizontal beam size is larger.

Dynamic aperture Same geometrical acceptance as SNS and J-PARC

Dynamic aperture decreases with superperiod structure. However, still enough margin compared with beam emittance.

	Normalised emittance	Geometrical emittance	Vertica size
Beam core	10 [pi mm mrad]	125 [pi mm mrad]	+/- 1
Collimator acceptance	20	250	+/- 2
Vacuum chamber size	40	500	+/- 3

At 3 MeV, uniform beam of 10 pi mm mrad (100%, normalised)

$$\Delta Q = -rac{r_p n_t}{2\pi eta \gamma^2 arepsilon_n B_f} = -0.12$$
 per 10¹¹ pro

FETS injector will reduce both emittance and peak intensity by more than one order of magnitude.

Science and Technology Facilities Council 0.25 pi mm mrad, 60 mA -> 0.02 pi mm mrad, 1 mA (50 turns for $3x10^{11}$)

Aperture specification

	normalised [π mm mrad]	un-normalised [π mm mrad]	Physical size [mm]
beam core	10	125	±16
collimator acceptance	20	250	± 23
physical acceptance	40	500	± 32

Table 2.10: Vertical beam size and acceptance ($\beta_{y,max}$ =2.0 m)

 Table 2.11: Vertical aperture

	doublet 1-4
physical acceptance [mm]	± 32
closed orbit distortion [mm]	± 8
beam stay clear [mm]	± 40
vacuum chamber thickness [mm]	10
trim coil thickness [mm]	20
magnet aperture mm]	± 70

Orbit excursion: 700~800 mm

	normalised [π mm mrad]	un-normalised [π mm mrad]	Physical size [mm]
beam core	10	125	± 20
collimator acceptance	20	250	± 28
physical acceptance	40	500	± 40

Table 2.7: Horizontal beam size and acceptance ($\beta_{x,max}$ =3.2 m)

Table 2.8: Horizontal aperture

doublet 1	doublet 2	doublet 3	doublet 4
3.5835	3.7143	3.6684	3.5900
4.1688	4.2695	4.3561	4.2324
585	555	688	642
± 40	\pm 40	\pm 40	± 40
± 8	± 8	± 8	± 8
3.5355	3.6663	3.6204	3.5420
4.2168	4.3175	4.4041	4.2804
681	651	784	738
140	140	140	140
3.3955	3.5263	3.4804	3.4020
4.3568	4.4575	4.5441	4.4204
961	931	1064	1018
	doublet 1 3.5835 4.1688 585 ± 40 ± 8 3.5355 4.2168 681 140 3.3955 4.3568 961	doublet 1doublet 2 3.5835 3.7143 4.1688 4.2695 585 555 ± 40 ± 40 ± 8 ± 8 3.5355 3.6663 4.2168 4.3175 681 651 140 140 3.3955 3.5263 4.3568 4.4575 961 931	doublet 1doublet 2doublet 3 3.5835 3.7143 3.6684 4.1688 4.2695 4.3561 585 555 688 ± 40 ± 40 ± 40 ± 8 ± 8 ± 8 3.5355 3.6663 3.6204 4.2168 4.3175 4.4041 681 651 784 140 140 140 3.3955 3.5263 3.4804 4.3568 4.4575 4.5441 961 931 1064

Table 2.9: Horizontal aperture without operating point of Q_y =3.76

	doublet 1	doublet 2	doublet 3	doublet 4
orbit radius _{min} [m]	3.5835	3.7143	3.6684	3.5900
orbit radius _{max} [m]	4.1433	4.2526	4.2291	4.1831
orbit excursion [mm]	560	538	561	593
physical acceptance (fixed momentum) [mm]	\pm 40	\pm 40	± 40	± 40
closed orbit distortion [mm]	± 8	± 8	± 8	± 8
beam stay clear <i>inside</i> [m]	3.5355	3.6663	3.6204	3.5420
beam stay clear outside [m]	4.1913	4.3006	4.2771	4.2311
beam aperture [mm]	656	634	657	689
GFR addition (each for both sides) [mm]	140	140	140	140
iron yoke <i>inside</i> [m]	3.3955	3.5263	3.4804	3.4020
iron yoke _{outside} [m]	4.3313	4.4406	4.4171	4.3711
magnet aperture [mm]	936	914	937	969

Why scaling FFA?

• Primary answer is dynamic aperture (DA).

- normalised) is our target.
- Harder to achieve with a non scaling FFA.
- Scaling law is the guiding principle for beam commissioning.

• Geometrical DA of ~1000 pi mm mrad (~100 pi mm mrad,

• Or orbit excursion tends to increase to achieve the target.

Injection

H- charge exchange injection with 5 bump

(Chris Rogers)

Injection

Orbit distortion will change tune and reduce dynamic aperture.

dQ=0.07 out of Q=3.40

(Chris Rogers)

DA > 50 pi mm mrad (normalised)

Extension to higher energy

Science and Technology Facilities Council

5 different ways of operation (FO or FF spiral)

Science and Technology Facilities Council Price we have to pay is the flexibility of transverse tune.

* Injection energy has to be above 20 MeV.

Space charge effects

Science and Technology Facilities Council

Space charge modelling in an FFA

- Equilibrium orbit is a function of time (momentum) and operating point.
 - Equilibrium orbit is fixed in a synchrotron.
- Important to know where the centre of charge distribution in order to calculate space charge effects.
 - Perturbation to betatron oscillation frequency matters.
- A bunch occupies the large fraction of the circumference, 1/2~1/4. The longitudinal size is much larger than the transverse.
 - A beam size is similar in 3D in a cyclotron.

Let's make the beam straight in a well defined coordinate

- Then, the next step is how to assign charges in a cylinder.
- We can still keep modulation of beam envelope in s-direction.

es in a cylinder. lope in s-direction.

s (longitudinal)

Scode's way of modelling

- Ideally, transverse (radial) position is measured from the closed orbit, not from the average position within a bin.
- It may be possible to define the instantaneous closed orbit, but could be tricky.

Define the close orbit within a bin as A straight line with a gradient of

$$\tan\left(\psi\right) = \frac{\sum p_{y,i}}{\sum p_{x,i}}$$

which goes through the point of

$$\left(\frac{\sum x_i}{n}, \frac{\sum y_i}{n}\right)$$

where n is the number of particle and i is index.

Finally, a curved beam in arbitrary position becomes straight

Simulation result (preliminary)

Lattice	FETS-FFA
Circumference	~ 23 m
Energy	3 MeV
Longitudinal distribution	Coasting
Transverse distribution	KV
Emittance (100%)	10 pi mm mrad, nor
Injection	Single turr
Operating point	(3.26, 3.26
Longitudinal bin	180 / ring
# of macro particle	10000

Emittance growth start happening at 1 x 10¹² and significant one above the intensity of 2×10^{12} .

Partially it is due to mismatch.

Simulation result (preliminary)

Space charge incoherent tune shift

$$\Delta Q_v = -\frac{n_t r_p}{\pi \epsilon_v (1 + \sqrt{\epsilon_h / \epsilon_v}) \beta^2 \gamma^3}$$

	Maximum inc. tune shift	RMS inc. tune shift	Cohere tune sh
10 x 10 ¹¹	-0.304	-0.304	-0.228
20 x 10 ¹¹	-0.608	-0.608	-0.456

Science and Technology Facilities Council

- Distance between operating point (3.26) and nearby resonance (3.00) is 3.26-3.00=0.26.

• Emittance growth starting around 10 x 10¹¹ is reasonable (no surprise!).

RF knock-out and its mitigation

Beam stacking

Benefits

- Bottleneck to achieve high beam power exists at injection energy.
- By beam stacking, beam power is not limited at injection.
- Repetition rate of an accelerator (120 Hz) can be different from that users will see (30 Hz).
- Longitudinal emittance is proportional to # of stacking (or larger).

Proton driver with beam stacking makes ISIS-II a unique spallation neutron source.

- Experimental demonstration (2 beams)
 - Is the total **momentum spread dp/p** 2 times dp/p of each beam?
 - Is the total **number of particles** is 2 times that of each beam?

Frequency component during beam stacking

The beam sees RF voltage at a cavity location

$$V_{gap} = V_0 \cos \omega_{rf} t \sum_{n=0}^{\infty} \delta \left(t - nT_{rev} \right)$$
$$= V_0 \sum_{n=0}^{\infty} \cos \omega_{rf} nT_{rev} = V_0 \sum_{n=0}^{\infty} \cos 2\pi n \frac{1}{2}$$

when \omega_rf << \omega_ref

$$V_{gap}$$
 (envelope) = $V_0 \cos \omega_{rf} t$

when \omega_rf ~ \omega_ref

$$V_{gap}$$
 (envelope) = $V_0 \cos (\omega_{rev} - \omega_{rf}) t$

(aliasing, beat, ...)

Science and Technology **Facilities** Council

 ω_{rf}

 ω_{rev}

 V_{gap} (envelope) means the lowest frequency component of RF voltage seen by the beam.

Requirement in the longitudinal direction imposes $\ \ rev$

Similarity to synchro-beta resonance

displacement.

In a bunched beam, energy gain or induced horizontal displacement has a frequency of synchrotron oscillation and its higher harmonics.

$$\delta x = -D_x \frac{dp}{p} = -\frac{D_x}{2} \frac{dT}{T} = -\frac{\pi D_x V_0 a_s}{T\lambda} \cos\left(\frac{dT}{T}\right)$$

For the stacked (coasting) beam,

$$\delta x = -D_x \frac{dp}{p} = -\frac{D_x}{2} \frac{dT}{T} = -\frac{D_x V_0}{T} \cos\left(\omega_{rev}\right)$$

Science and Technology **Facilities** Council

When the RF cavity is located at the finite dispersion point D_x, energy gain induces horizontal

 $-\omega_{rf}$)t

When it becomes the same frequency of (horizontal) betatron oscillations, resonance occurs.

$$\frac{\partial \beta, h}{\partial rev}$$
 where $\frac{\omega_{\beta, h}}{\omega_{rev}} = Q_{\beta, h}$

Proposed mitigation methods (from MURA papers)

- For a ring with single RF cavity
 - Reduce voltage around resonance
 - Control betatron phase around resonance by changing tune for short time (like a jump around transition energy crossing).
- For a ring with two RF cavities
 - Choose a proper betatron phase advance between two cavities
 - Tipped RF cavities to cancel transverse fields
- For a ring with multiple RF cavities
 - Place cavities with equal spacing.

When phase advance btw 2 cavities is pi.

When phase advance per cavity is not pi.

Hardware R&D status

Hardware magnet prototype

• Ta-Jen Kao's talk at 16:35 today.

Hardware **RF** cavity update

• MA as well as ferrite cavity R&D.

Hitachi FT3L Core Measurements

- Measured with 100 V peak per core •
- Power for 8 core cavity at 6 kV peak 50 65 kW
- Consider using 2 cavities at 1/2 voltage ~16 kW each, meaning no • Tuning system and wideband for fast modulations

Hardware diagnostics

- Beam position monitor
- DC current monitor
- Beam loss monitor
- Wall current monitor
- ...

A half size BPM and scraper

Summary

- Our goal is demonstration of the high intensity FFA
- Baseline lattice is fixed
 - FD spiral
 - Superperiod with 4-fold symmetry
 - Large dynamic aperture
- Possible option to be a higher energy accelerator was studied
- Space charge effects are similar to synchrotron
- mitigation is considered
- parameters

Found RF knock-out is one of known issues during beam stacking and

• Hardware prototype is under development based on the baseline lattice

Thank you for your attention

Robustness of optics

Practical adjustment of doublet magnet specification

Packing factor 0.5

- Reduction of field by ~10%.
- Short straight is 0.257 m.

Parameter dependence

Macro particles (mode number=2)

Simulation result (preliminary)

Initial beam envelope.

Beam envelope at 19th turn with 20 x 10¹¹.

Layout, coordinate system

- C-shape magnet
- r0 = 3.6 m for 3 MeV orbit.

Science and Technology Facilities Council Tanh fringe, c1=c10 cos(zeta) = 3.91 cos(zeta)
 = 3.38616 at r=4.0 m.

Multipole expansion

Scode uses multipole expansion to calculate space charge potential.

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\phi\right) + \frac{1}{r^2}\frac{\partial^2}{\partial \varphi^2}\phi + \frac{\partial^2}{\partial z^2}\phi - \epsilon$$

Fourier decompose in azimuthal direction

$$\phi(r, z, \varphi) = \sum_{m = -\infty}^{\infty} \phi_m(r, z) \in$$
$$-\frac{\rho}{\epsilon_0} (\equiv n(r, z, \varphi)) = \sum_{m = -\infty}^{\infty} n_m(r, z) \in$$

Potential is solved in each multipole m separately

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\phi_{m}\left(r,z\right)\right) - \frac{m^{2}}{r^{2}}\phi_{m}\left(r,z\right) =$$

- Needs to define the expansion centre.
 - It is a closed orbit in a synchrotron.
 - Define expansion centre as the average position of all the macro particles.

Science and Technology **Facilities Council**

 $= n_m (r, z)$

Simulation with KURNS 3D field map

We should see something at ~2.5 ms

No closed orbit in an FFA

• Particles in global polar coordinate system

- It is still an approximation because design orbit is not along the constant radius.
- It could be improved later. For the time being, let's try.

Parameters necessary for back of the envelope calculation

ISIS RF parameters I assumed (from catalogue of HEAs, 1989)

injection energy	70.4 MeV
beta, gamma	0.367040, 1.075032
ring diameter	52 m
revolution time	1.484635 micro s
harmonic number	2
RF frequency	1.34 to 3.06 MHz*
RF voltage	14 kV per cavity
transverse tune	(4.31, 3.83)

*df/dt = (3.06 - 1.34) MHz/ 0.010 s = 172 MHz/s at least

Location of RF cavities

h=2 cavities	Long straight section 2,3,4,7,8,9*
h=4 cavities	Long straight section 5,6
	Short straight section 4,5

We want to change the RF phase difference between two cavities arbitrarily, not necessarily according to synchronised particles.

Optics parameters at cavity (from C. Prior)

beta_x, y	(4 m, 6 m)
alpha_x, y	(2, -1)
Dx, Dx'	2 m, -0.4
transverse tune	(4.31, 3.83)

*phase advance between 2 cavities could be = $0.431 \times 1, 2, 3, 4, 5$

Simulation results_{Qh=4.11}

Proposed beam experiment at ISIS

Procedure

- Storage mode at injection energy.
- Inject the beam and let it debunch to become the coasting beam.
 - Measure momentum spread by Schottky signal and beam intensity.
- Excite one or two RF cavities with below 3^{*}f_rev. It does not disturb the coasting beam. Change RF frequency from 3*f_rev to 2*f_rev linearly.
- - Measure momentum spread by Schottky signal and beam intensity in the process.

Measurement

- DC current monitor
- Beam size
- Schottky signal

Parameters we will scan

- Speed of RF frequency change.
- RF voltage
- Phase difference of two cavities.

Goals

- Reproduce beam loss during the beam stacking process.
- Verify if mitigation measures work.