

Daniela Kiselev :: Department Head Beam acceleration & development :: Paul Scherrer Institut

The IMPACT-TATTOOS initiative as part of the substantial upgrade to the HIPA infrastructure @ PSI

FFA23, 10 – 15.9.2023, Jefferson Lab, Newport News, VA 23606 USA

Accelerator Facilities at PSI

UCN

SINQ Spallation Neutron Source

SWISSFEL

5.8 GeV

p-Therapy (PROSCAN) Comet: 250MeV, <1μA

Central control room

Swiss Light Source (SLS) 2.4GeV, 400mA High Intensity Proton Accelerator (HIPA) 590 MeV, max. 2.4mA

SINQ

The PSI Proton Accelerator Facilities

HIPA (High Intensity Proton Accelerator) PROSCAN (Proton therapy): since 2007

- CW (50.63 MHz), 590 MeV,
- up to 2.4 mA(1.44 MW)
- 2 meson production targets
- 7 secondary beam lines (μ , π)
- SINQ and UCN spallation source

Comet: superconducting cyclotron CW, 250 MeV, up to 1μ A protons medical treatment:

2 Gantries, 1 Eye Cancer Treatment Station Irradiation Station: PIF

PAUL SCHERRER INSTITU

HIPA with IMPACT (= HIMB & TATTOOS)

Isotope and Muon Production with advanced cyclotron and target technology

- Upgrade of target station M to target station H for 100 x more surface muons
 → HIMB = High Intensity Muon Beams
- New target station for producing radioisotopes for research in cancer therapy
 - → TATTOOS = Targeted Alpha Tumour Therapy and Other Oncological Solutions

<image><image><text><text>

Application to the Swiss Roadmap for Research Infrastructure

- July 2022: scientific evaluation best marks!
- Dec. 2022: evaluation of technical feasibility + finances
 → ETH Board recommends IMPACT for the admission on the Swiss Roadmap
- June 2023: Publication of Swiss Roadmap

Conceptional Tt Design Report

Final decision:

Dec. 24: Decision of Swiss parliament about funding in 2025-2028

~ 100 people are involved

https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A41209

Current Isotope Production at PSI

https://people.physics.anu.edu.au/~ecs103/chart3d/

"Matched Pair" Radionuclides for Theragnostics

Theragnostics: Therapy and Diagnostics

Isotopes, i.e. same element, preferred, because:

- same production process of the pharmaceuticals
- same reaction of human body
- fewer side effects

TATTOOS @PSI: Motivation

Present situation:

Current production @CERN-ISOLDE + 50 % losses for transportation: not enough for killing tumors in humans (clinical studies)

- barely enough for research in mice (not enough for healing tumors)

TATTOOS:

Producing enough radioisotopes with 590 MeV p (100 μ A)

- for cancer treatment & diagnostics (theragnostics) in quantities needed for clinical studies on human beings
- research only, no commercial production planned.

A lot of infrastructure has to be removed for the new building (start 2027)

New Building: 500 m²

Courtesy of C. Sattler

Massive shielding required

Courtesy of C. Sattler

PAUL SCHERRER INSTITUT

In-situ Dose & Shielding Target

Requirement: < 10 μ Sv/h: controlled working place < 25 μ Sv/h: not permant working place

Courtesy A. Ivanov

PAUL SCHERRER INSTITUT

Beamline to TATTOOS and operation modes

- ightarrow 100 μ A split from main beam to TATTOOS
- mode 2: UCN → ABT polarity change full beam (~ 2 mA) swept to UCN by fast kicker magnet ABS

Quasi-parallel beam operation, i.e. no beam to TATTOOS, if pulse to UCN

 \rightarrow ~ 15 % beam time loss for TATTOOS (acceptable)

10 cm Ta (Phase 1),

later U or Th

175 stripes out of a W-alloy
size: 2 mm x 50 μm
2 cathodes operating with 172 kV
deflection: +/- 1.5 mrad

Olivo, M., Mariani, E. and Rossetti, D. An electrostatic beam splitter for the PSI 590 MeV - 1MW proton beam line (1998).

Electric field map, resolution : 25 μm by 3000 μm by 500 μm

Electric field map (ANSYS): Courtesy of H. Zhang

First 3 stripes measure the current.

For protecting the splitter from damage:

→ current limit on stripes was set by comparing to the splitter EXT used at 72 MeV for the isotope production simulations

As expected: larger losses about a factor 2

- ightarrow dose rate measurements above proton beam line are analyzed
- \rightarrow critical, since the beamline is maintained hands-on
- \rightarrow further measurement (dose rates) & simulations needed

2023: Ongoing Beam tests using water cooled quadrupoles

 \rightarrow larger beam optics should be possible aim: increase current of splitted beam (up to 100 μ A)

- by Laser: RILIS (Resonance Ionization Laser Ion Source)
- & mass separation → Magnet: ISOL (Isotope Separation Online)
- & chemistry in shielded cells

Clinical preparation (radiolabeling) in a separate clean room (GMP), collaboration with University hospital Zurich (USZ)

Target: 10 cm Ta distributed on 20 cm

- A challenge to cool the 100 μ A proton beam, ~ 26 kW on target
- Operation temperature: ~ 2500 2800 °C
- ightarrow required for good diffusion of the radioisotopes out of the target

up to 6000A for heating (~ 2000 – 2800 °C)

i P

Courtesy of U. Wellenkamp

TRIUMF High Power Target

Target for 500 MeV, 100 μA, ~ 25 kW in target

possible target design:

90 fins (55 x 55 mm) increase effective emissivity from 0.35 to 0.92

Bricault et al, NIM B204, 319 (2003)

Remanent gamma dose of Ta target (28 d, 100 μ A, 12 h cooling)

1000 Sv/h in 10 cm

Target, beamdump etc incl. shielding can be pulled by exchange flask

New exchange flask needed

shown: existing flask, 45 t due to shielding

Service cell for target exchange

IMPACT schedule

	2023		2024		2025	;	202	5	2027	2028	2029	9 2		2030	
						Decision: Ready for Long Shutdown			Long Re-Start HIPA (Proton down Beam & User Operation)						
	ERI Funding Period 2025-28														
HIPA	SD	Beam OP	SD	Beam OP	SD	Beam OP	SD	Beam OP	Lor	ng Shutdown	Beam OP SD	Beam OP	SD	Beam OP	
SLS 2.0			SLS Do	arktime	SLS SD										

HIPA: 2027 no beam

- \rightarrow Installation of HIMB
- ightarrow 2028 first beam with new target station H

TATTOOS: New building necessary \rightarrow Beam 2 years after HIMB (2030)

Advantages:

- Target station installations for HIMB and TATTOOS not at the same time
- \rightarrow more PSI resources available, less temporary hired staff
- \rightarrow less shortage on storage place for new components, shielding

- Target chamber design
- Prototype of Ta target for testing purposes
- ion beam simulation:
 presently 45° analyzing magnet, 90° might be required
 → challenge is the limited space
- 2024 TDR IMPACT

IMPACT: a 77 MCHF project

HIMB: upgrade of the existing meson production station M TATTOOS: new target station to produce radioisotopes with 590 MeV protons

- covers a broad field of applications: particle, solid state physics, life science
- to be realized in 2027 to 2030

We appreciate the support of **RIUMF**

With contribution of:

- C. Baumgarten
 N. Preiss
- R. Eichler
- S. Gerhardt
- M. Hartmann
- A. Ivanov
- S. Jollet
- D. Laube
- R. Martinie
- N. van der Meulen office @ PSI
- M. Mostamand

- D. Reggiani
 - C. Sattler
- J. Snuverink
- S. Warren
 - U. Wellenkamp
 - H. Zhang
- & Design

Thank you for your attention!

199192 Hapicis

• ISAAC TRIUMF... Collaboration Meeting in April 2023 in Vancouver

• CERN-ISOLDE... MOU to be signed in 2023 : PSI Part of ISOLDE Collaboration

CERN-MEDICIS...PSI Partner since 2017

particle physics:

2 separators to remove positrons

TATTOOS: Targeted Alpha Tumour Therapy and Other Oncological Solutions

Life science:

Producing enough radioisotopes with 590 MeV p (100 μ A)

- for cancer treatment & diagnostics (theranostics) in quantities needed for clinical studies on human beings
- research only, no commercial production planned.

TATTOOS is Part of the 60 MCHF-IMPACT Proposal accepted by SNF & ETH-Rat to be included in Roadmap of Swiss Research Infrastructures in 2023

