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Stacking in FFAs
• FFAs naturally accommodate stacking because of their large momentum acceptance, DC magnets and 

flexible RF.
• This allows the output repetition rate to be varied and the space charge limit at injection to be 

circumvented (e.g. stack 4 beams in ISIS-II to extract at 25 Hz instead of 100 Hz).
• The stacked beam coasts while newly injected beam is accelerated. How do coasting beam instabilities 

affect the stacked beam? 
• Here we consider transverse instabilities only.

Injection energy

Extraction energy
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coasting stacked beam

bunched beam



Relevant features of scaling FFAs

Zero chromaticity Removes one source of Landau damping.

Nonlinear fields (B ~ rk) Tune shift with amplitude could provide Landau damping

Wide aperture magnet Parallel plate aperture can often be assumed, ZV = 2*ZH
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Transverse coasting beam instability
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3) Transverse coasting beam instability
Oscillation modes
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A coasting beam of N particles circulates with
ω0, current I = eNω0/(2π) in a ring of uni-
form focusing. Each particle executes a beta-
tron oscillation of Qω0

θi = θ0i + ω0t , yi(t) = ŷ cos(Qω0(t − ti)).

Depending on the phases Qω0ti between ad-
jacent particles we have different modes. We
choose a form as seen at fixed location θ

y(t) = ŷ cos(nθ − ωt) , y(0) = ŷ cos(nθ).

Frozen in time t = 0 gives closed wave with
n periods. Following a particle θs(t) = θ0 +
ω0t gives betatron oscillation with frequency
Qω0.

ys = ŷ cos(nθ0 − (ω − nω0)t)

= ŷ cos(nθs − Qω0t)

giving for the frequency ω seen by stationary
observer

ω = (n+Q)ω0 = ωβ with −∞ < n < ∞.

Divide modes into fast and slow waves ac-
cording to sign of phase difference between
adjacent particle

ωβf = (nf + Q)ω0 , nf > −Q

ωβs = (ns − Q)ω0 , ns > Q.

cas07ld-11

• Consider a proton beam of charge qN in a ring of circumference C =2πR. Assume 
uniform line density ρ(s) = qN/C. Assume a transverse perturbation d(s,t) of form

n: mode number, Ω: angular frequency of perturbation 

• The corresponding dipole moment is 

• The equation of motion in transverse plane, including wakefield produced by the perturbation, is

where the force term is given by the driving and detuning wake function 

Δ

driving/dipolar wake detuning/quadrupolar wake

source particle displacement

test particle displacement

N. Biancacci et al, PRAB 23, 124402 (2020)



Driving/dipolar impedance
• Impedance is given by Fourier transform of wake function 
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• Rewrite equation of motion with force replaced by 

• Defining the mode frequency                  and assuming small frequency shift

• Complex frequency shift can result in exponential growth (neg. imaginary part, i.e. positive real Z) and 
frequency shift (real part) via 

Growth rate (turns) : Norm. frequency shift:



Resistive wall impedance 
(circular aperture, δskin << wall thickness)
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72 = WAKE FIELDS AND IMPEDANCES 

Figure 2.10. Geometry used 
resistive-wall impedance Zd’ . 

to estimate the 

The space charge impedances are purely imaginary. As discussed following 
Eq. (2.56), a rigid uniform disk beam executing transverse dipole motion can 
be modeled by taking Eq. (2.80) for the longitudinal impedance and the 
m = 1 member of Eq. (2.79) for the transverse impedance. 

The longitudinal impedance ZJ can often be modeled by an equivalent 
parallel LRC resonator circuit as shown in Figure 2.12(a).23 The impedance 
of the circuit is given by 

1 1 . -=- 
Z; R, 

which gives 

(2.81) 

(2.82) 

where Q = R,dC/L is the quality factor and oR = l/a is the resonant 
frequency. This impedance is drawn in Figure 2.12(b) and (c) for Q = 1 and 
10. The quantity R, has the dimension of LR/L2”. The area covered under 
Re Z ‘I (0) is m 

/ 

TRs% mdwReZ,!!(w) = 7. 
0 

(2.83) 

The width (half width at half maximum) of the resonance peak of Re Z#O) 
is about do = o,J2Q if Q z+ 1. A sharply peaked impedance has Q z+ 1, 
while a broad-band impedance has Q N 1. 

23A. Hofmann, K. Hiibner, and B. titter, IEEE Trans. Nucl. Sci. NS-26, 3514 (1979); P. B. 
Wilson et al., IEEE Trans. Nucl. Sci. NS-24, 1211 (1977); A. Hofmann, Proc. 11th Int. Conf High 
Energy Accel., Geneva, 1980, p. 540. 

• The longitudinal impedance follows from resistance per unit length = 1/σΑ . Note the skin depth

• The corresponding transverse impedance is given by

Figure: A. Chao



Resistive wall impedance 
(parallel plate aperture, δskin << wall thickness)
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• In the parallel plate case, the vertical impedance is double the horizontal

where

• Assuming a parallel plate geometry is a reasonable starting point for a rectangular aperture.

h

δskin

• Implies vertical instabilities will have a faster growth rate – in fact this is not necessarily true.



Fast wave Slow Wave

n – Qy<0 n – Qy>0

Re(ZRW) Negative Positive

Im(ΔΩ) Positive Negative

Stability Stable Unstable
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PS study – driving/dipolar impedance only
• Coasting beam study in PS where a parallel aperture is assumed. Assume zero momentum spread and zero 

chromaticity.

• Instability at the lowest slow mode, n=7 (just above the working points QH=QV=6.4).

• Growth rate/frequency shift calculated by modified version of PyHEADTAIL is in agreement with theory.
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To be self-consistent with the initial assumption of coherent
steady-state oscillations of Eq. (2), yðs; tÞ is also equal to

yðs; tÞ ¼ ΔejðΩt−ns=RÞ: ð11Þ

From Eqs. (11) and (10), we get the dispersion relation

1 ¼ −
q2vN
γm0C2

jZdriv
y ðΩÞ 1

ω2
β − ðΩ − nω0Þ2

: ð12Þ

Let us now solve for Ω. We rewrite Eq. (12) as

ω2
β − ðΩ − nω0Þ2 ¼ −

q2vN
γm0C2

jZdriv
y ðΩÞ; ð13Þ

from which, definingΩ ¼ nω0 − ωβ þ ΔΩn, and assuming
ΔΩn ≪ nω0 − ωβ, we have

ΔΩdriv
n ¼ −

q2vN
2γm0C2ωβ

jZdriv
y ½ðn −QyÞω0&: ð14Þ

The rise time, in number of turns, associated to each line is
defined as τn ¼ −1=ImðΔΩdriv

n Þ=T0 and we define the
normalized frequency shift as ReðΔΩdriv

n Þ=ω0.
Having chosen n as an integer number, the solutions

with n −Qy > 0 will sample ReðZdriv
y Þ > 0 and the waves

are therefore unstable (so called slow waves) with
positive rise time, while solutions with n −Qy < 0 will
sample ReðZdriv

y Þ < 0 and the waves are stable (so called
fast waves) with negative rise time.
The PyHEADTAIL code was originally conceived to

simulate the collective effects of bunched beams only
[6]. We have introduced some modifications to adapt the
code to simulate coasting beams: the longitudinal charge
density covers the full machine circumference, a simple
drift replaces the rf focusing, the wake interaction is
computed with the inverse Fourier transform of the product
between the impedance and the charge transverse dipole
distribution.
In order to benchmark the new PyHEADTAIL code with the

complex mode shift of Eq. (14) we assumed a uniform
longitudinal charge distribution with neither momentum
spread nor chromaticity.
In the frame of this study, we consider the resistive wall

impedance of a flat beam pipe with PS-like parameters: two
parallel plates of stainless steel (electrical resistivity of
7.2 × 10−7 Ωm) with 27.5 mm half gap, infinitely thick and
628.32 m long. The impedance is computed with the
ImpedanceWake2D code [20,21].
Figure 1 shows the computed driving and detuning

impedances: as expected the vertical detuning impedance
is half the driving one in the same plane, while the
horizontal detuning impedance is opposite in sign to the
driving one in the same plane; the driving horizontal is half

the vertical one [22]. More accurate models for the PS
transverse impedance are available [9,23–25] but beyond
the scope of this work. It is important to notice the inductive
bypass effect toward low frequencies [26,27], at which the
effect of the image charges dominates the imaginary part of
the impedances.
For the simulation, we assume equal working points in

the horizontal and vertical planes Qx;y ¼ 6.4 but no
coupling between the two planes. The beam is approxi-
mated by 50000 macroparticles, sliced with 128 bins and
tracked for 2000 turns with variable intensity ranging from
1 × 1013 to 1 × 1014 charges. Figure 2 shows the amplitude
spectrum of the vertical plane as a function of the number of
turns: since the coasting beam spectrum samples the
impedance in the classical thick wall regime, i.e., a

FIG. 1. Vertical driving and detuning impedances (respectively
in blue and black), and horizontal driving and detuning imped-
ances (in red and magenta) for a flat pipe made of two parallel
plates of stainless steel (electrical resistivity of 7.2 × 10−7 Ωm,
27.5 mm half gap, infinite thickness, 628.32 m long).

FIG. 2. Amplitude spectrogram of the instability simulated with
PyHEADTAIL accounting for the driving impedance only at the
intensity of 1 × 1013 charges. The most unstable line corresponds
to the slow wave n ¼ 7, for which ðn −QyÞ ¼ 0.6.

FAST-SLOW MODE COUPLING INSTABILITY FOR … PHYS. REV. ACCEL. BEAMS 23, 124402 (2020)

124402-3

monotonically decreasing real part versus frequency, the
lowest frequency slow wave corresponding to n−Qy ¼ 0.6
is the most unstable.
Figure 3 shows the rise time of the instability (at the top)

and the normalized frequency shift of the most unstable
mode (at the bottom), compared to Eq. (14). The agreement
is excellent and it can be seen that, as expected, for all the
intensities the vertical plane is more unstable than the
horizontal one. It is important to notice that the resolution
on the normalized frequency shift has been improved over
the classical FFT algorithm by using a harmonic analysis
method based on iterative frequency interpolation [28].

III. TRANSVERSE COASTING BEAM
INSTABILITY SIMULATIONS WITH BOTH
DRIVING AND DETUNING IMPEDANCES

We now include the effect of the detuning impedance,
first analytically following a treatment similar to the one
discussed in Sec. II, then with macroparticles simulations.
From Eq. (5), the infinitesimal source charge ρðs; t0Þvdt0

induces a detuning wakefield on the test particle yðs; tÞ
given by

dFdet
y ðs; tÞ ¼ −

q
C
yðs; tÞWdet

y ðvt0 − vtÞρðs; t0Þvdt0: ð15Þ

Integrating over time we get the total force as

hFdet
y iðs; tÞ ¼ −

q
C
yðs; tÞ

Z
∞

t
Wdet

y ðvt0 − vtÞρðs; t0Þvdt0:

ð16Þ

Differently from the driving force, which is produced
only by the perturbation, the detuning force depends on the
unperturbed longitudinal distribution ρðs; tÞ. When this is
constant, the detuning force simplifies into

hFdet
y iðs; tÞ ¼ −

q2N
C2

yðs; tÞ
Z

∞

t
Wdet

y ðvt0 − vtÞvdt0

¼ −
q2N
C2

yðs; tÞ
Z

∞

0
Wdet

y ðzÞdz: ð17Þ

From the definition of impedance of Eq. (6) we have
Z

∞

0
Wdet

y ðzÞ dz ¼ jvZdet
y ð0Þ: ð18Þ

In turn the force can be expressed as

hFdet
y iðs; tÞ ¼ −

q2vN
C2

yðs; tÞjZdet
y ð0Þ: ð19Þ

In presence of detuning impedance only, Eq. (3) is
written as follows

ÿðs; tÞ þ ω2
βyðs; tÞ ¼ −

q2vN
γm0C2

jZdet
y ð0Þyðs; tÞ: ð20Þ

Gathering the coefficients of yðs; tÞ, the effect of the
detuning impedance is to add an additional tune shift to the
bare machine working point. The new working point is
defined as ω0

β ¼ ωβ − ΔΩdet
n . Solving Eq. (20) for this

new frequency and neglecting second order terms in ΔΩdet
n ,

we have

ΔΩdet
n ¼ −

q2vN
2γm0C2ωβ

jZdet
y ð0Þ: ð21Þ

It is interesting to notice that in the specific case of the
resistive wall impedance, the thick-wall regime has 1=

ffiffiffiffi
ω

p

frequency dependence [29], i.e., with a singularity at DC,
that disappears only if the inductive bypass effect is taken
into account [26,27]. In other words, it is necessary to have
the full/correct detuning impedance description up to DC
(this is not the case for the driving impedance as the lowest
needed frequency is the one of the lowest unstable mode).

IV. THE FAST-SLOW WAVES COUPLING

Let us now consider the effect of both driving and
detuning impedances. Comparing respectively Eqs. (9),

FIG. 3. PyHEADTAIL simulations (with dots) compared to theory
[16] for driving impedance only (with full lines) for the horizontal
(blue) and the vertical (red) planes. The rise time of the most
unstable mode is shown at the top while the normalized frequency
shift is shown at the bottom.

N. BIANCACCI, E. MÉTRAL, and M. MIGLIORATI PHYS. REV. ACCEL. BEAMS 23, 124402 (2020)
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“ISIS-II” vs PS
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• No lattice established for ISIS-II FFA as yet.

PS ISIS-II

Kinetic energy 1.4 GeV 1.2 GeV

Radius 100m 45m

Revolution frequency 0.44 MHz 0.95 MHz

Intensity 1e13 – 1e14 1.3e14

Magnet half gap 27.5 mm 40 mm (FETS-FFA)

Tunes (H,V) 6.4, 6.4 10.25, 10.25 (?)



Effect of tune and aperture on impedance
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• Choice of fractional tune determines 
the slow wave frequency = (n – Qv)ω0. 

• The closer the fractional part is to 1, 
the higher the impedance.

0.95 ΜΗz

• Impedance varies with 1/h^3.

0 MHz



“ISIS-II” growth rate/frequency shift
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PS “ISIS-II”

N 1.3e13 1.3e14

fslow[MHz] 0.26 0.71

ZV,H [MΩ/m] 1.1 0.1

τ (turns) 242 400

• Order of magnitude increase in intensity in ISIS-II 
offset by small impedance (higher frequency and 
aperture).



Detuning/quadrupolar impedance
• The distortion of symmetric modes in a non-circular aperture introduces a detuning impedance.

• In addition, the classical impedance model no longer applies as ω->0 and skin depth > wall thickness. Correct 
impedance calculated by ImpedanceWake2D.

• The detuning impedance is sampled at DC for coasting beam.

• The resulting tune shift can cause mode coupling between fast and slow waves. In the PS case, this mode coupling 
results in an instability in the horizontal plane.
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To be self-consistent with the initial assumption of coherent
steady-state oscillations of Eq. (2), yðs; tÞ is also equal to

yðs; tÞ ¼ ΔejðΩt−ns=RÞ: ð11Þ

From Eqs. (11) and (10), we get the dispersion relation

1 ¼ −
q2vN
γm0C2

jZdriv
y ðΩÞ 1

ω2
β − ðΩ − nω0Þ2

: ð12Þ

Let us now solve for Ω. We rewrite Eq. (12) as

ω2
β − ðΩ − nω0Þ2 ¼ −

q2vN
γm0C2

jZdriv
y ðΩÞ; ð13Þ

from which, definingΩ ¼ nω0 − ωβ þ ΔΩn, and assuming
ΔΩn ≪ nω0 − ωβ, we have

ΔΩdriv
n ¼ −

q2vN
2γm0C2ωβ

jZdriv
y ½ðn −QyÞω0&: ð14Þ

The rise time, in number of turns, associated to each line is
defined as τn ¼ −1=ImðΔΩdriv

n Þ=T0 and we define the
normalized frequency shift as ReðΔΩdriv

n Þ=ω0.
Having chosen n as an integer number, the solutions

with n −Qy > 0 will sample ReðZdriv
y Þ > 0 and the waves

are therefore unstable (so called slow waves) with
positive rise time, while solutions with n −Qy < 0 will
sample ReðZdriv

y Þ < 0 and the waves are stable (so called
fast waves) with negative rise time.
The PyHEADTAIL code was originally conceived to

simulate the collective effects of bunched beams only
[6]. We have introduced some modifications to adapt the
code to simulate coasting beams: the longitudinal charge
density covers the full machine circumference, a simple
drift replaces the rf focusing, the wake interaction is
computed with the inverse Fourier transform of the product
between the impedance and the charge transverse dipole
distribution.
In order to benchmark the new PyHEADTAIL code with the

complex mode shift of Eq. (14) we assumed a uniform
longitudinal charge distribution with neither momentum
spread nor chromaticity.
In the frame of this study, we consider the resistive wall

impedance of a flat beam pipe with PS-like parameters: two
parallel plates of stainless steel (electrical resistivity of
7.2 × 10−7 Ωm) with 27.5 mm half gap, infinitely thick and
628.32 m long. The impedance is computed with the
ImpedanceWake2D code [20,21].
Figure 1 shows the computed driving and detuning

impedances: as expected the vertical detuning impedance
is half the driving one in the same plane, while the
horizontal detuning impedance is opposite in sign to the
driving one in the same plane; the driving horizontal is half

the vertical one [22]. More accurate models for the PS
transverse impedance are available [9,23–25] but beyond
the scope of this work. It is important to notice the inductive
bypass effect toward low frequencies [26,27], at which the
effect of the image charges dominates the imaginary part of
the impedances.
For the simulation, we assume equal working points in

the horizontal and vertical planes Qx;y ¼ 6.4 but no
coupling between the two planes. The beam is approxi-
mated by 50000 macroparticles, sliced with 128 bins and
tracked for 2000 turns with variable intensity ranging from
1 × 1013 to 1 × 1014 charges. Figure 2 shows the amplitude
spectrum of the vertical plane as a function of the number of
turns: since the coasting beam spectrum samples the
impedance in the classical thick wall regime, i.e., a

FIG. 1. Vertical driving and detuning impedances (respectively
in blue and black), and horizontal driving and detuning imped-
ances (in red and magenta) for a flat pipe made of two parallel
plates of stainless steel (electrical resistivity of 7.2 × 10−7 Ωm,
27.5 mm half gap, infinite thickness, 628.32 m long).

FIG. 2. Amplitude spectrogram of the instability simulated with
PyHEADTAIL accounting for the driving impedance only at the
intensity of 1 × 1013 charges. The most unstable line corresponds
to the slow wave n ¼ 7, for which ðn −QyÞ ¼ 0.6.
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N. Biancacci et al, PRAB 23, 124402 (2020)(11) and (14) for the driving force, and Eqs. (20), (21) for
the detuning force, we can write

ÿðs; tÞ þ ω2
βyðs; tÞ ¼ 2ωβðΔΩdriv

n þ ΔΩdet
n Þyðs; tÞ: ð22Þ

In Sec. III we described the effect of the detuning
impedance on transverse coasting beam instabilities
and the way to correctly account for it from the
analytical point of view. As the detuning impedance
introduces a large frequency shift due to the sampling
at DC, we investigate the possibility of fast-slow
waves coupling, so far not investigated in the available
literature.
Let us consider two nearby waves, namely a slow wave

y1ðs; tÞ corresponding to n ¼ n1 and a fast wave y2ðs; tÞ
corresponding to n ¼ n2. Dropping the dependence on s
and t, the coupled system can be written as

(
ÿ1 þ ω2

βy1 ¼ 2ωβΔΩtot
n1y1 þ 2ωβΔΩtot

n2y2

ÿ2 þ ω2
βy2 ¼ 2ωβΔΩtot

n2y2 þ 2ωβΔΩtot
n1y1

ð23Þ

where ΔΩtot
n1;n2 ¼ ΔΩdriv

n1;n2 þ ΔΩdet
n1;n2 . The nontrivial solu-

tion of the system represents the solution for the coupled
waves. Looking for the solutions in the form of y1;2 ¼
ejðΩ−n1;2ω0Þt we get the matrix system

!
m11 m12

m21 m22

"!
y1
y2

"
¼

!
0

0

"
; ð24Þ

with

m11 ¼ ðωβ þ n1ω0 −ΩÞðωβ − n1ω0 þ ΩÞ − 2ωβΔΩtot
n1 ;

m12 ¼ −2ωβΔΩtot
n2 ;

m21 ¼ −2ωβΔΩtot
n1 ;

m22 ¼ ðωβ þ n2ω0 −ΩÞðωβ − n2ω0 þ ΩÞ − 2ωβΔΩtot
n2 :

Looking for the nontrivial solutions of the system, for
example using [30], we obtain the coupled complex
frequency shift of the fast-slow waves.
Figures 4 and 5 show, respectively for the horizontal

and vertical plane, the normalized frequency shift and the
rise time of the instability accounting for the coupling
between adjacent fast and slow waves. As can be seen,
the prediction from the coupled waves approach of (24)
is approximated by the uncoupled one of Eq. (14) only
for intensities below 1 × 1013 charges. At 6 × 1013 the
horizontal plane shows coupling between fast and slow
waves, with consequent shorter instability rise time. In
the vertical plane, the fast and slow waves are repelling
each other, and the difference in complex frequency shift
is negligible.
Figure 6 shows the comparison between Eq. (24) and

PyHEADTAIL simulations performed with both driving and
detuning impedances. The agreement is excellent and
shows the importance of considering the coupling of fast
and slow waves in order to correctly predict the rise time
and frequency shift of the instability. This mechanism is
conceptually analogous to the one of a transverse mode
coupling instability (TMCI) occurring when bunched
beam modes couple with each other [18]. Similarly,
coupling occurs between fast and slow waves in coast-
ing beams.

FIG. 4. At the top, the rise time of the most unstable mode
(m.u.m.) in the horizontal plane is shown respectively with (red
line) and without (dashed blue line) coupling of fast and slow
waves. At the bottom, the frequency normalized to the revolution
frequency of the m.u.m. with and without coupling is shown
together with the normalized frequency shift of the fast (dashed
gray line) and slow (full gray line) waves corresponding
respectively to n ¼ 6 and n ¼ 7.

FIG. 5. Same as Fig. 4 for the vertical plane.
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PyHEADTAIL: simulate coasting beam with  resistive wall wake
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• 6D tracking code used to simulate collective effects including instabilties.
• “ParallelHorizontalPlatesResistiveWall” wakefield class in PyHEADTAIL assumes skin depth << wall thickness and a 

bunched beam.
• Update wake calculation in code to simulate coasting beam.



PyHEADTAIL wakefield (bunched beam)

• Dipolar kick experience by macroparticle i due to all other macroparticles 

• Reduce computational time by slicing bunch. Assume wake is constant within slice.

Figure: M. Schenk

15
convolution of wake with dipole moment



PyHEADTAIL wake kick calculation (bunched)
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Convolution

Assume uniform dipole moment 

convol = numpy.convol(source_moments, wake, ‘valid’)



PyHEADTAIL wakefield (coasting)

• Wrap convolution so that there is no head or tail.

17

convol_wrap = numpy.convol(np.tile(source_moments,2), wake, ‘valid’)[n:2*n]

• After making this change in the code, check if growth rate matches prediction

Assume uniform dipole moment 



PyHEADTAIL growth rate

18

• Start with uniform distribution in z, zero momentum spread and a small transverse 
emittance  (1e-7 mm mrad).

• Track 5000 turns.
• The growth rate is of same order as prediction (predicted growth rate τ=400)



Landau damping

• Slide 5 showed the coherent frequency shift ΔΩ from impedance in the absence of tune spread. Define a 
coherent tune shift ΔQcoh= -ΔΩ/ω0 in this case (minus sign to change convention). 

• In the absence of tune spread, the instability grows for any Im(ΔQcoh) > 0.

• Introducing tune spread changes the coherent tune shift. There can be some region of Im(ΔQcoh) > 0 where 
the instability is damped.

• This region is found by solving the dispersion relation. In the case of amplitude dependent tune spread

19

where Q is the coherent tune, ρ(Jx,Jy) is the density distribution and Qx(Jx, Jy) is the amplitude dependent 
tune. Including just linear tune shift with amplitude, 

J.S Berg, F. Ruggiero, CERN report SL-AP-96-71, 1996

cross termdirect term



Stability region with octupoles
• J.S. Berg and F. Ruggiero derived analytic expressions for the stability limit for the case of 2D 

amplitude dependent tunes.
• Example below shows a case where there is a direct term only (b=0). Sign of octupole determines  

20

J.S Berg, F. Ruggiero, CERN report SL-AP-96-71, 1996

with different actions are tracked for 1024 turns from which
the tunes are computed using interpolated fast Fourier
transform [16]. Also, a Gaussian distribution is always
assumed. As shown in Fig. 3, there is a good agreement
between the analytical and numerical approach in the case
of octupolar detuning (Eq. 2).

III. APPLICATIONS TO THE LHC
OPERATIONAL CYCLE

A. Betatron squeeze

The LHC beams share a common beam pipe only in a
restricted area around each IP. Due to aperture consider-
ations, the value of the β function at the IP (β!) is kept
significantly large during the injection of the beams into the
machine, as well as the energy ramp. It is then decreased to
its minimal value to maximize luminosity, through the so-
called betatron squeeze. The strength of long range
interactions mainly depends on the normalized separation,
i.e., the distance between the beams, normalized to the
beam size, at the location of each interaction. Before the
squeeze, the normalized separation in the common area is
in the order of 40σ, resulting in weak long range beam-
beam interactions. Thus, the amplitude detuning is domi-
nated by the lattice nonlinearities, in particular due to
octupole magnets used to provide Landau damping in the
absence of beam-beam interactions [17]. Together with the
transverse feedback, they ensure the stability of the beams.
They can be powered with a current Ioct up to ∼500 A, with
either polarity, giving rise to a linear amplitude detuning:

!ΔQx ¼ a · Jx þ b · Jy
ΔQy ¼ b · Jx þ a · Jy

; ð2Þ

where Jx and Jy are the transverse actions normalized to the
beam normalized rms emittance ϵ. The detuning coeffi-
cients for a beam energy of Ebeam are given by [17]:

a ¼ 3.28 ·
Ioct½A' · ϵ½m'
E2
beam½TeV2'

b ¼ −2.32 ·
Ioct½A' · ϵ½m'
E2
beam½TeV2'

:

The resulting stability diagrams for each polarity are
shown in Fig. 4. As the expected unstable modes in the
LHC have tune shifts with negative real parts [18], the
negative polarity is preferable in this configuration [2,3].
However, during the squeeze, the β! is reduced, while the
crossing angle is kept constant, resulting in a smaller
normalized separation at the location of each long range
interaction. Thus, their effect starts playing a significant
role in the single particle dynamics. As can be seen in
Fig. 5, at the end of the squeeze, the normalized separation
at the location of most of the long range interactions already
has the value at which they will remain during luminosity
production. The only difference being the parallel separa-
tion orbit bump, which affects only the interactions closest
to the IP. As discussed in [19], this has a strong impact on
the tune spread and consequently on the stability diagram.
Figure 6 shows the modification of the stability diagram
during the squeeze for two extreme bunches, one having
the maximum number of long range interactions, referred
to as common, and one with the least, referred to as
PACMAN bunch [9]. With a negative polarity of the
octupole, the long range contribution is partially
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FIG. 3. Comparison of analytical [2] and numerical derivation
of a stability diagram with LHC octupoles powered with −500 A
for a 4 TeV beam with a normalized emittance of 2 μm.

−3 −2 −1 0 1 2 3
Re(∆Q) ×10−3

0.0

0.5

1.0

1.5

2.0

2.5

-I
m

(∆
Q

)

×10−4

500 A
-500 A

FIG. 4. Stability diagrams from octupoles powered with oppo-
site polarities.

FIG. 5. Separation between the beams normalized to the beam
size of Beam 1 at the location of the long range beam-beam
interactions in the common chamber around IP5 at the end of the
betatron squeeze (blue) and in collision (red).
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• PyHEADTAIL already includes amplitude tune shift as an option.



Conclusions

• Coasting beams in scaling FFA may be subject to transverse instabilities. 

• Since the scaling FFA is normally rectangular, a parallel geometry may be assumed. In this case the 
vertical dipolar RW impedance is twice the horizontal.

• The detuning impedance can be significant for the case of a coasting beam in a non-circular 
aperture. It may result in fast-slow mode coupling (N. Biancacci paper).

• Work to update the wake calculation to deal with a coasting beam in PyHEADTAIL in underway.

• Check if tune shift with amplitude from nonlinear field in scaling FFA will result in Landau 
damping for the instability.
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