

Science and Technology Facilities Council

The FFA code FIXFIELD

M. Topp-Mugglestone, University of Oxford J.B. Lagrange, ISIS, RAL, STFC

FixField code

Single particle tracking code C language Runge Kutta 4 integration Standard libraries + CLapack Ortable to different OS and straight)

Crosschecked results with experiments for horizontal scaling FFA (circular

© Crosschecked results with OPAL/S-CODE/ZGOUBI for vertical scaling FFA

Integrated equations of motion

 $\begin{pmatrix}
\frac{\mathrm{d}u_x}{\mathrm{d}s} = \frac{(u_y B_z - u_z B_y)}{B\rho} \\
\frac{\mathrm{d}u_y}{\mathrm{d}s} = \frac{(u_z B_x - u_x B_z)}{B\rho} \\
\frac{\mathrm{d}u_z}{\mathrm{d}s} = \frac{(u_x B_y - u_y B_x)}{B\rho}
\end{cases}$ $\frac{\mathrm{d}x}{\mathrm{d}s} = u_x$ $\frac{\mathrm{d}y}{\mathrm{d}s} = u_y$ $\frac{\mathrm{d}z}{\mathrm{d}z} = u_z$

• x: horizontal, y: longitudinal, z: vertical

Integration in s, longitudinal abscissa measured along the orbit of the particle (Frenet-Serret framework)

• Unit

Cattice composed of independent cells with superposition of magnetic field contribution from each cell component

vector
$$\overrightarrow{u} = \frac{\overrightarrow{p}}{p}$$

Thin RF gaps used for acceleration

3

Available magnetic components

Output: Sealing FFA (radial and spiral)
Output: Outp

Vertical scaling FFA

Separated function magnet up to octopole

©Cylindrical and Cartesian field maps with linear interpolation

Science and Technology Facilities Council

Fringe field models

Main body only (no fringe field) Linear fringe field Enge fringe field $\mathcal{F}(s) = \frac{1}{1 + e^{P(s)}}, P(s) = C_0 + C_1 \frac{s}{\lambda} + C_2 \left(\frac{s}{\lambda}\right)^2 + C_3 \left(\frac{s}{\lambda}\right)^3$ • Only $C_1 \neq 0$, equivalent to tanh • Full Enge fringe field (C_0, C_1, C_2, C_3) Arctan fringe field (vFFA only) $\mathcal{F}(s) = \frac{1}{\pi} \arctan\left(\frac{s}{\lambda}\right) + \frac{1}{2}$

- Enge)
- Generation of field maps from field model
- Maxwellian test of a given field (div B, Curl B)
- Constructional cell boundary:
 - Mirror symmetry
 - © Zero-field boundary
- © Generation of alignment errors (translation and / or rotation)

Field options

© Extrapolation off the median plane to 16th order (vFFA Arctan, hFFA spiral

7

Particle distribution

Can generate different beam distributions: Waterbag

Gaussian

© 2D ellipse (phase space)

- 30 - 31 - 32 - 32

E

Input with text files (lattice file, beam file)

Generate output as text files and/or terminal

Particle position and direction

Solution with the seen by the particle

Position of the magnets

Available internal functions to generate plots with Gnuplot

Tracking and plots

9

Tracking and plots

Input with text files (lattice file, beam file)

Generate output as text files and/or terminal

Particle position and direction

Solution magnetic field seen by the particle

Position of the magnets

Available internal functions to generate plots with Gnuplot

2.5 1.5 0.5 B [T] -0.5 -1.5 -2.5

FETS-VFFA, RAL internal report

 Line search method (iterative method with averaged operator) Nelder-Mead method Observe Both methods can be confined to specific initial particle parameters (median-plane, zero-angle)

Periodic orbit search

11

Transfer matrix computation

Computed from tracking

Particles tracked with offset from reference trajectory to determine the coefficients of the matrix

ⓒ Contribution of the second order can be cancelled by tracking particles with ±offsets (e.g. $m_{11} = \frac{x_{+\delta x} - x_{-\delta x}}{2\delta x} + O(\delta x^3)$)

Parzen decoupling procedure (vFFA)

Symplectification function available

Betatron tunes and phase advances

2 available methods:

Computed by FFT (number of turns must be 2ⁿ)

Computed from transfer matrix

Tune diagramme can be plotted with resonances lines (systematic and/or non-systematic)

nuSTORM storage ring, https://inspirehep.net/literature/2052496

Beta-functions and dispersion functions

Computed from transfer matrix along the reference orbit

Possibility to compute effective field boundary of magnets as a function of s

nuSTORM storage ring, https://inspirehep.net/literature/2052496

Dynamic aperture (DA) search

©Computation of the largest initial amplitude away from the reference orbit with stable motion over a set number of turns

Possibility to compute and use decoupled space amplitude (vFFA)

Harmonic analysis

Decomposition of field components along the orbit to compute harmonic analysis

Understanding of focusing components

Can predict DA by computing octopolar components

FETS-hFFA octopolar harmonic analysis for different spiral angles (internal report) FFA'23

Call Fixfield from a python script for lattice optimisation (tunes and DA) optimisation) with python libraries (e.g. scipy)

Python scripts

Tracking/design code for FFAs Over Available on line (Github): https://github.com/lagrangejb/fixfield Suggestions/requests: jean-baptiste.lagrange@stfc.ac.uk

