

Superconducting CCT Magnets: A Flexible Technology for Compact FFA's

September 14th, 2023 2023 Workshop on Fixed Field Alternating Gradient Accelerators

> Lucas Brouwer Lawrence Berkeley National Laboratory

Outline

- introduction to the Canted-Cosine-Theta (CCT) magnet design
- incorporating alternating gradients into a continuous coil (AG-CCT)

Abbreviated History of the Concept (HEP focused)

Science

Canted-Cosine-Theta (CCT) SC Magnets

Advantages

- excellent field quality (to large % of aperture)
- stress management for high-field and/or large apertures
- combined function fields (i.e. dipole + quadrupole)

Challenges

• slightly more conductor (~15-20%)

Office of

Science

• tradeoff of longer ends vs. efficiency for very short magnets

The CCT is a Flexible Technology for Combined Function Fields

Example: Combined Function Dipole + Quadrupole (40 mm ϕ)

Oper

The CCT Naturally Extends to Curved Magnets

The alternating gradient CCT (AG-CCT) is a method for producing alternating gradient fields with continuous windings instead of separate magnets

Magnetic design of curved CCTs: in toroidal (binormal) coordinates you can derive the relation between the winding path and the toroidal harmonics (but is it useful?)

Instead, parameterize the CCT geometry in the beam dynamics software COSY INFINITY

Initial Hard Edge Model

Office of

Science

generate "seed" set of curved CCT winding coefficients approximating hard-edge solution

Biot-Savart Model from Coil Parameterization

- Motivation: analytic coil design in curved frame is difficult, but coil parameterization is straight-forward
- Directly connects coil geometry to beam optimization (eliminates field parameterization in curved system)
- Biot-Savart model includes all end effects and coil transitions

Outline

- US-MDP program for Nb₃Sn and HTS magnets
- AG-CCT design for proton therapy
- fabrication and test of curved dipole layers

Metallic Winding Mandrels Accurately Position the Conductor and Intercept Lorentz Forces for Stress Management

Force accumulation in traditional Cos(θ)

CCT ribs intercept force

- Important for high field magnets with strain sensitive conductor (Nb₃Sn/HTS)
- Important for large aperture magnets

Nb₃Sn and HTS CCT Dipole Development at LBNL (within the HEP - US Magnet Development Program)

Nb₃Sn: 9 T demonstrated in a 90 mm bore, 13 T to be demonstrated in a 120 mm bore in ~3 years

CCT3,4,5: 9.2 T, 90 ø (2015-2018)

subscale: 5 T, 50 ø (now)

CCT6: 13 T, 120 ø (2026)

HTS: demonstrated 1.5-3 T, future focus is hybrid ~15 T (HTS+Nb₃Sn)

C2: 3 T, 60 ø (2021) - REBCO

BIN5c: 1.6 T, 31 ø (2021) – Bi2212

D. Arbelaez et. al, 2022, doi.org/10.1109/TASC.2022.3155505 X. Wang et al., 2021, doi.org/10.1088/1361-6668/abc2a5 T. Shen et al., 2022, DOI: 10.1103/PhysRevAccelBeams.25.122401

ARDAP Accelerator Stewardship project to develop a large momentum acceptance SC gantry for proton therapy

A single AG-CCT magnet provides 1:1 imaging from the degrader source to patient (with large momentum acceptance)

Large momentum acceptance beam optics with a single, 5 T magnet for proton therapy gantries (70-250 MeV)

ENERG

Science

A reduced bend prototype for a first test

Baseline technology established for design, fabrication, and test of high-curvature CCT magnets with very large apertures

A prototype magnet consisting of the two dipole layers reached the design field in a liquid helium bath (4.5 K)

The magnet reached nominal current after 17 quenches (60% of wire short-sample)

2.4 T dipole field in very large aperture (290 mm) with tight bend radius (ρ =0.9 m)

LBNL: L. Brouwer, S. Caspi, J. Herrera, J. Swanson, M Maruszewski, M. Marchevsky, K. Edwards, J. Taylor, W. Wan, S. Prestemon, X. Wang, C. Myers, S. Myers, R. Hafalia, M. Turqueti, C. Sun, D. Robin, M. Reynolds, A. Hodgkinson, T. Lipton

Varian Medical: A. Godeke, M. Schillo, A. Huggins, R. Nast

Paul Scherrer Institute: M. Schippers, A. Gerbershagen, C. Calzolaio, S. Sanfilippo

L. Brouwer et al., "Design and test of a curved superconducting dipole magnet for proton therapy," NIM-A, vol. 957, p. 163414, Mar. 2020, https://doi.org/10.1016/j.nima.2020.163414

Outline

 new program to build and test combined function CCT magnets relevant to FFA's

We have new R&D funding to develop combined function CCT magnets (relevant to FFA applications)

Combined function CCT's map onto existing layouts

New accelerator layouts leveraging the AG-CCT?

Goals for five year program:

- 1. develop the technology for combined function, superconducting CCT magnets
- 2. build and test a prototype magnet to demonstrate performance in the 5-7 T range

Near term: solidify design parameters for the prototype magnet within 1 year.

Question for this workshop - what do you see as the key aspects of SC magnet technology which needs to be demonstrated for future FFA's?

Summary

- CCT is flexible design for combined function fields in straight and curved geometries
- The AG-CCT integrates alternating gradients into a single magnet
- 8-10 T Nb₃Sn dipoles for HEP (US-MDP)
- 2.4 T curved NbTi dipole for proton therapy

 plan to build and test ~5 T combined function CCT magnets relevant to FFA's (now is an excellent time for community feedback)

Backup Slides

Focus on scoping the AG-CCT design to 1.2, 2.4 GeV/c passes in collaboration with LBNL's Accelerator Modeling Program (AMP)

U.S. DEPARTMENT OF

ENE

Office of

Science

Focus on scoping the AG-CCT design to 1.2, 2.4 GeV/c passes in collaboration with LBNL's Accelerator Modeling Program (AMP)

Harmonics along the length for coil design based on SCOFF model (at 30 mm reference radius – 60% of aperture)

In plane fields for perfect sectioning + peak field on conductor

Peak field on the conductor is 7.5 T, a 23% rise (from 6.11 T of dipole+gradient)

-4.5 T

These fields are a bit high for Nb-Ti, but feasible with respect to conductor performance (the LHC NbTi cable is a good reference)

36 strands of 0.825 mm wire (15.1 mm thick)

With a large momentum acceptance, each magnet setting covers a range of treatment energy (e.g. 20% dp/p)

 some tumors can be treated at fixed-field
order of magnitude reduction in magnet field ramping for worst-case scenario

Hall probes verified the design field at nominal current, a more complicated measurement system is required for future field quality characterization determining the harmonic content

At 4.5 K and nominal current of 922 A

Office of

Science

- probes/predicted agree within error on center axis: H1, H4, H5
- probes/predicted fall slightly outside error off center axis: H2,H3

H3 H1 H2

H5

H4