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1.
. Machine operation has been stopped since March 2023.

Introduction

It has been 14 years since the main ring started operation.

. Some users desire the beam from KURNS FFA, but No concrete plans

for operation are in place.

. The utilization plan of the entire facility and the future reuse of the

FFAs are under consideration.

. One of the main option is modification of the main ring to an ERIT ring

for producing the super heavy element.
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ERIT_SHE

. new scheme
conventional method
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Beam species, target for SHE

test run
fica+ 33U~ fcn

real run
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ERIT_SHE

beam
target Z=119  |Z=120
248Cm(Z=96) 3.4x105y | 51V (23) | 54Cr (24)
249Bk (Z=97) 327 d 50Ti (22) | 5V (23)
249Cf (Z=98) 351y 458¢c (21) | 5°Ti (22)
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4He + 209Bj — 211A¢t

211 At can be produced using 4He beam
energies of 21 MeV to 29 MeV (299Bi
target 80 um).

If the energy is higher than 29 MeV, the
toxic 210Po Is produced and cannot be
used.

The lifetime of 211At is 7.2 hours and is
produced after about 5 hours of
irradiation.
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ERIT SHE scheme

Target
U0O2:2001g/cm?2
Wedge-shape : 1n>~0.5

Ca+ 10
7.9MeV/u
(from Linac)

lon source
RFQ
DTL(LINAC)

Catl8:typical  7joCn ‘=g—
E-7.9MeV/u i

+AE ¥ A

_I IRF acceleration
U Frev ~1.4MHz
h =16
Vrf ~400kV

Injection current : 1 puA (6.25E12 pps )

assumption :
1000 turn survival
target thickness 200pug/cm2
detection efficiency 10%

Can detect 1 SHE in every 38 days

Continuous injection
continuous production
continuous extraction
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Summary of ERIT simulation

e Transverse emittance tends to constant value after 2000 turns due to the ionization
beam cooling. =#en=115 mm.mrad

* As the beam cooling does not affect in longitudinal direction, energy spread
iIncreases. After 1000 turns—<oe>~50"q keV

 Using wedge target, transverse-longitudinal coupling suppress the energy spread
iIncrease. N=0.9— en~350[mm.mrad], <oe>~20*gkeV

 Capable in terms of the ring acceptance.

e Cavity voltage
 Assuming the target thickness is 200ug/cm2. Energy loss ~ 36 MeV/turn ( h=16).
o cf. R.T. rf cavity (~10MHz) Vrf ~400kV (in ERIT case)
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closed orbit of different charge state(static)
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charge state distribution

Ti50+Cm248: Elab=275MeV = 5.5 MeV/u

" . 10° B
o Initial charge state g; will be changed : ' Shima
into the state qr passing thru the
production target. o 18+
o Final charge state g;is determined % (S — £
- . = ;
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amplitude change due to charge state transition

e Suppose the case of charge changing e.g. +20 =& +22 — +19
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Increase the k value
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Increase the k value

k=11, v, =153, v, =227
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Increase the k value
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Increase the k value
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Increase the k value
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Increase the k value
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In ordinary synchrotron lattice

e Betatron amplitude variations caused by COD fluctuation due to the charge state
variation can be suppressed by making dispersion suppressed sections and locating
the target in that section as well as FFA lattice with an integer horizontal tune.

e Betatron amplitude change caused by ellipse fluctuation i.e. tune fluctuation coming
from the higher order chromaticity, which doesn’t exist in “scaling” FFA rings.
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multi particle tracking

k=214, v, =1998, v,=3.090 % ; poinay u 113 ——

II II ° I | | | | " beta, — SN l I‘ll-l """""" IOOﬂ'mm """"""" mra d <<<<<<<<<<<<<< --------------------------------- i

s S S S :

R[m]

asf . . . .

6077 /71T TN NN\ 0 5 10 15 20 25 30 35 3 ' ' '

l I | I I i I 0 50 100 150 200
-6 -4 -2 0 2 4 6 nath Ienn’m (m\ # of turns

0.3 | |
38 ' ? pom xy'u1:5 ——

e . op=1% — R ool €M = 1007: mm . mrad AAAAAAAAAAAAAAAA - _

... C un AUV

o8l \ N /S - -

06\ e o ARG E EELERIER

survival ratio

0 [ oo B e e R

o2f B N o o R o2f S - S :

i
0 1000 2000 3000 4000 5000 6000 0 50 100 150 200
turn number # of turns

17




# of turns suvived

error sensitivity near v, = 2

100000

10000

1000

100

COD (m)

0.15

-0.15

setting the v, at least 0.05 away from the v, = 2, beam survives
~1000 turns.
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ERIT with long straight
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Summary

1. ERIT for producing superheavy element as one of the plans for reuse of the
main ring Is under consideration.

2. Multi charge state beams can circulate in the ring with the target located at
the pseudo dispersion free section.

3. Operating ERIT near v, = 2.05 (1.95) can accumulate multi-charged
beams.

4. Zero chromaticity is essential for multi-charge state ERIT.
5. Use the Lagrangian insertion?
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