Conceptual Design of FFA for Super Heavy Element Production using ERIT

Outline

1. Introduction
2. Super heavy element
3. Possibility of ERIT for SHE production

- Validity of the ERIT scheme for SHE ring
- Stability of the beams with different charge state

4. Summary

Introduction

1. It has been 14 years since the main ring started operation.
2. Machine operation has been stopped since March 2023.
3. Some users desire the beam from KURNS FFA, but No concrete plans for operation are in place.
4. The utilization plan of the entire facility and the future reuse of the FFAs are under consideration.
5. One of the main option is modification of the main ring to an ERIT ring for producing the super heavy element.

Nuclear chart

produce 119 or/and 120 using ERIT

ERIT_SHE

conventional method

SHE: Super Heavy Element

new scheme

Beam species, target for SHE

test run

$$
{ }_{20}^{48} \mathrm{Ca}+{ }_{92}^{238} \mathrm{U} \rightarrow{ }_{112}^{286} \mathrm{Cn}
$$

real run

$$
\begin{aligned}
& { }_{22}^{50} \mathrm{Ti}+{ }_{97}^{249} \mathrm{Bk} \rightarrow{ }_{119}^{299} \mathrm{XX} \\
& { }_{23}^{51} \mathrm{~V}+{ }_{96}^{248} \mathrm{Cm} \rightarrow 119 \mathrm{XX} \\
& { }_{24}^{54} \mathrm{Cr}+{ }_{96}^{248} \mathrm{Cm} \rightarrow{ }_{120} \mathrm{XX} \\
& { }_{22}^{50} \mathrm{Ti}+{ }_{98}^{249} \mathrm{Cf} \rightarrow{ }_{120}^{299} \mathrm{XX} \\
& { }_{24}^{54} \mathrm{Cr}+{ }_{95}^{243} \mathrm{Am} \rightarrow{ }_{119} \mathrm{XX} \\
& { }_{25}^{55} \mathrm{Mn}+{ }_{95}^{243} \mathrm{Am} \rightarrow{ }_{120} \mathrm{XX}
\end{aligned}
$$

ERIT_SHE

target	beam	
	$Z=119$	$\mathrm{Z}=120$
${ }^{248} \mathrm{Cm}(\mathrm{Z}=96) 3.4 \times 10^{5} \mathrm{y}$	$51 \mathrm{~V}(23)$	${ }^{54} \mathrm{Cr}(24)$
${ }^{249} \mathrm{Bk}(\mathrm{Z}=97) 327 \mathrm{~d}$	${ }^{50} \mathrm{Ti}(22)$	${ }^{51} \mathrm{~V}(23)$
${ }^{249} \mathrm{Cf}(\mathrm{Z}=98) 351 \mathrm{y}$	${ }^{45} \mathrm{Sc}(21)$	${ }^{50} \mathrm{Ti}(22)$

assume ERIT can accumulate 1000 turns

1 pb one event per week using existing method

1 fb one event per 10 years using existing method
0.1 fb one event per month using ERIT

${ }^{4} \mathrm{He}+{ }^{209} \mathrm{Bi} \rightarrow{ }^{211} \mathrm{At}$

${ }^{211}$ At can be produced using ${ }^{4} \mathrm{He}$ beam energies of 21 MeV to $29 \mathrm{MeV}\left({ }^{209} \mathrm{Bi}\right.$ target $80 \mu \mathrm{~m}$).
If the energy is higher than 29 MeV , the toxic ${ }^{210} \mathrm{Po}$ is produced and cannot be used.
The lifetime of ${ }^{211} \mathrm{At}$ is 7.2 hours and is produced after about 5 hours of irradiation.

K. Nishio

ERIT SHE scheme

Injection current : 1 p $\mu \mathrm{A}$ (6.25 E 12 pps)
assumption : 1000 turn survival target thickness $200 \mu \mathrm{~g} / \mathrm{cm} 2$ detection efficiency 10%

Can detect 1 SHE in every 38 days

Continuous injection continuous production continuous extraction

Growth of transverse emittance and energy spread

Summary of ERIT simulation

- Transverse emittance tends to constant value after 2000 turns due to the ionization beam cooling. $\rightarrow \varepsilon_{\mathrm{N}}=115 \mathrm{~mm}$.mrad
- As the beam cooling does not affect in longitudinal direction, energy spread increases. After 1000 turns $\rightarrow<\sigma_{E}>\sim 50^{*} q$ keV
- Using wedge target, transverse-longitudinal coupling suppress the energy spread increase. $\eta=0.9 \rightarrow \varepsilon_{N} \sim 350$ [mm.mrad], $\left\langle\sigma_{E}\right\rangle \sim 20^{*} q k e V$
- Capable in terms of the ring acceptance.
- Cavity voltage
- Assuming the target thickness is $200 \mu \mathrm{~g} / \mathrm{cm}^{2}$, Energy loss $\sim 36 \mathrm{MeV} / \mathrm{turn}(\mathrm{h}=16)$.
- cf. R.T. rf cavity ($\sim 10 \mathrm{MHz}$) Vrf $\sim 400 \mathrm{kV}$ (in ERIT case)

closed orbit of different charge state(static)

- Scaling FFA
- cf. $k=1$

$$
\frac{r}{r_{0}}=\left(\frac{q_{0}}{q}\right)^{1 / k}
$$

- $\mathrm{q} 0=+18, \mathrm{q}=+19$
$\rightarrow r / r_{0}=0.95 \quad \mathrm{ro}=4 \mathrm{~m} \rightarrow 3.8 \mathrm{~m}$

charge state distribution

- Initial charge state q_{i} will be changed into the state q_{f} passing thru the production target.
- Final charge state q_{f} is determined statistically by the probability distribution regardless the initial state q_{i}

Ti50+Cm248: Elab=275MeV $=5.5 \mathrm{MeV} / \mathrm{u}$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $\boldsymbol{+ 2 0} \boldsymbol{\rightarrow + 2 2} \boldsymbol{\rightarrow + 1 9}$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $\boldsymbol{+ 2 0} \boldsymbol{\rightarrow + 2 2} \boldsymbol{\rightarrow + 1 9}$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $\boldsymbol{+ 2 0} \boldsymbol{\rightarrow + 2 2} \boldsymbol{\rightarrow + 1 9}$

$$
q=+20
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $\boldsymbol{+ 2 0} \boldsymbol{\rightarrow + 2 2} \boldsymbol{\rightarrow + 1 9}$

$$
q=+20
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $\boldsymbol{+ 2 0} \boldsymbol{\rightarrow + 2 2} \boldsymbol{\rightarrow + 1 9}$

$$
q=+20
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+20 \rightarrow+22 \rightarrow+19$

$$
q=+20
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+20 \rightarrow+22 \rightarrow+19$

$$
q=+20
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+20 \rightarrow+22 \rightarrow+19$

$$
q=+20 \quad q=+21
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+20 \rightarrow+22 \rightarrow+19$

$$
q=+20 \quad q=+21
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+20 \rightarrow+22 \rightarrow+19$

$$
q=+20 \quad q=+21
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+20 \rightarrow+22 \rightarrow+19$

$$
q=+20 \quad q=+21
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+20 \rightarrow+22 \rightarrow+19$

$$
q=+20 \quad q=+21 \quad q=+19
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+20 \rightarrow+22 \rightarrow+19$

$$
q=+20 \quad q=+21 \quad q=+19
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+20 \rightarrow+22 \rightarrow+19$

$$
q=+20 \quad q=+21 \quad q=+19
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+\mathbf{2 0} \rightarrow+\mathbf{2 2} \rightarrow+19$

$$
q=+20 \quad q=+21 \quad q=+19
$$

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+\mathbf{2 0} \rightarrow+\mathbf{2 2} \rightarrow+19$

$$
q=+20 \quad q=+21 \quad q=+19
$$

- betatron amplitudes change turn by turn

amplitude change due to charge state transition

- Suppose the case of charge changing e.g. $+\mathbf{2 0} \rightarrow+\mathbf{2 2} \rightarrow+19$

$$
q=+20 \quad q=+21 \quad q=+19
$$

- betatron amplitudes change turn by turn

increase the k value

increase the k value

$$
k=1.1, \quad \nu_{x}=1.53, \quad \nu_{y}=2.27
$$

increase the k value

$$
k=1.1, \quad \nu_{x}=1.53, \quad \nu_{y}=2.27
$$

$$
k=2.1, \quad \nu_{x}=1.89, \quad \nu_{y}=2.07
$$

increase the k value

$$
k=1.1, \quad \nu_{x}=1.53, \quad \nu_{y}=2.27
$$

$k=2.1, \quad \nu_{x}=1.89, \quad \nu_{y}=2.07$

$k=4.1, \quad \nu_{x}=2.52, \quad \nu_{y}=1.62$

increase the k value

$$
k=1.1, \quad \nu_{x}=1.53, \quad \nu_{y}=2.27
$$

$k=2.1, \quad \nu_{x}=1.89, \quad \nu_{y}=2.07$

$$
k=4.1, \quad \nu_{x}=2.52, \quad \nu_{y}=1.62
$$

increase the k value

$$
k=1.1, \quad \nu_{x}=1.53, \quad \nu_{y}=2.27
$$

$k=2.1, \quad \nu_{x}=1.89, \quad \nu_{y}=2.07$

$$
k=4.1, \quad \nu_{x}=2.52, \quad \nu_{y}=1.62
$$

increase the k value

$$
k=1.1, \quad \nu_{x}=1.53, \quad \nu_{y}=2.27
$$

$k=2.1, \quad \nu_{x}=1.89, \quad \nu_{y}=2.07$

$$
k=4.1, \quad \nu_{x}=2.52, \quad \nu_{y}=1.62
$$

increase the k value

$$
k=1.1, \quad \nu_{x}=1.53, \quad \nu_{y}=2.27
$$

$k=2.1$

$k=2.1, \quad \nu_{x}=1.89, \quad \nu_{y}=2.07$

$k=4.1, \quad \nu_{x}=2.52, \quad \nu_{y}=1.62$

increase the k value

increase the k value

$k=1.1, \quad \nu_{x}=1.53, \quad \nu_{y}=2.27$

$$
k=4.1, \quad \nu_{x}=2.52, \quad \nu_{y}=1.62
$$

$k=5.57, \quad \nu_{x}=2.956, \quad \nu_{y}=1.245$

in ordinary synchrotron lattice

- Betatron amplitude variations caused by COD fluctuation due to the charge state variation can be suppressed by making dispersion suppressed sections and locating the target in that section as well as FFA lattice with an integer horizontal tune.
- Betatron amplitude change caused by ellipse fluctuation i.e. tune fluctuation coming from the higher order chromaticity, which doesn't exist in "scaling" FFA rings.

in ordinary synchrotron lattice

- Betatron amplitude variations caused by COD fluctuation due to the charge state variation can be suppressed by making dispersion suppressed sections and locating the target in that section as well as FFA lattice with an integer horizontal tune.
- Betatron amplitude change caused by ellipse fluctuation i.e. tune fluctuation coming from the higher order chromaticity, which doesn't exist in "scaling" FFA rings.

in ordinary synchrotron lattice

- Betatron amplitude variations caused by COD fluctuation due to the charge state variation can be suppressed by making dispersion suppressed sections and locating the target in that section as well as FFA lattice with an integer horizontal tune.
- Betatron amplitude change caused by ellipse fluctuation i.e. tune fluctuation coming from the higher order chromaticity, which doesn't exist in "scaling" FFA rings.

in ordinary synchrotron lattice

- Betatron amplitude variations caused by COD fluctuation due to the charge state variation can be suppressed by making dispersion suppressed sections and locating the target in that section as well as FFA lattice with an integer horizontal tune.
- Betatron amplitude change caused by ellipse fluctuation i.e. tune fluctuation coming from the higher order chromaticity, which doesn't exist in "scaling" FFA rings.

- Because of this, it was considered difficult to realize a multi-charge state beam storage ring

in ordinary synchrotron lattice

- Betatron amplitude variations caused by COD fluctuation due to the charge state variation can be suppressed by making dispersion suppressed sections and locating the target in that section as well as FFA lattice with an integer horizontal tune.
- Betatron amplitude change caused by ellipse fluctuation i.e. tune fluctuation coming from the higher order chromaticity, which doesn't exist in "scaling" FFA rings.

- Because of this, it was considered difficult to realize a multi-charge state beam storage ring

multi particle tracking

$$
k=2.14, \quad \nu_{x}=1.998, \quad \nu_{y}=3.090
$$

error sensitivity near $\nu_{x}=2$

setting the ν_{x} at least 0.05 away from the $\nu_{x}=2$, beam survives ~1000 turns.

ERIT with long straight

race track configuration violates the scaling law which is essential for multicharge ERIT

$$
\nu_{x}=1.95
$$

insertion of the wedge drift section fulfills the scaling law

the approach to the resonance $1 \nu_{x}=2$
makes closed orbit unstable

Summary

1. ERIT for producing superheavy element as one of the plans for reuse of the main ring is under consideration.
2. Multi charge state beams can circulate in the ring with the target located at the pseudo dispersion free section.
3. Operating ERIT near $\nu_{x}=2.05$ (1.95) can accumulate multi-charged beams.
4. Zero chromaticity is essential for multi-charge state ERIT.
5. Use the Lagrangian insertion?

backup 1

qx_lin qy_lin $\quad 1.9951819469793564 \quad 304266121053614$

