FFAG'23 WORKSHOP

Jefferson National Laboratory September 10-15, 2023 FFAG CLASS

Sept. 10

A 1.5HR WORK PLAN

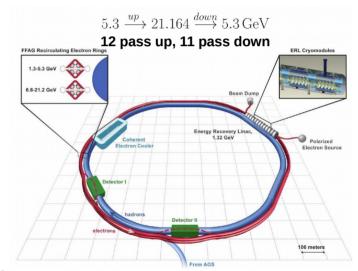
An introduction to stepwise raytracing techniques, using Zgoubi

François MÉOT Brookhaven National Laboratory Collider-Accelerator Department 1/ Confirm all participants' install work?

Confirm gnuplot runs on your computer?

- Yes: fine, simulations to come will be on your computer

- No: team with someone who has that working


1/ Let's move on: we'll use eRHIC-LL material

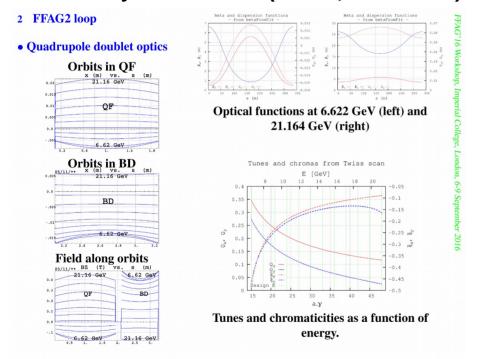
* Why eRHIC-LL?

Well, workshop host is Jlab ... on-going FFAG R/D for CEBAF energy upgrade, we're not far from eRHIC-LL design:

- arcs are FFAG lattice
- that's GeV energy range
- there is SR
- there is spin diffusion

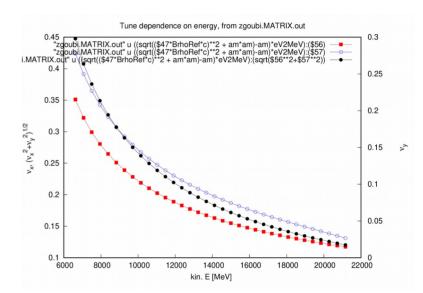
That's all ingredients met in the arcs of the 20 GeV eRHIC-LinacLinac 23-pass ERL.

* I'll use this document as a guideline – my speech at FFAG'16 Workshop:


https://indico.cern.ch/event/543264/contributions/2295871/attachments/1334156/2006132/slides_FMeot_eRHICSimulations.pdf

1/ eRHIC FFAG2 ring cell

1.a - Get the material from there:


https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/FFAG/eRHIC-FFAG/FFAG2/cell/

1.b - We can try an orbit scan (slide 3, left column):

* Read the README, it says: [path2]/zgoubi-code/zgoubi/zgoubi -in cell_scanOrbits.INC.dat

1.c – Or a tune scan (slide 3, bottom right):

* The README says: [path2]/zgoubi-code/zgoubi/zgoubi -in cell_scanTunes.INC.dat

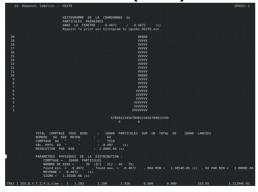
* Figure out what's going on in cell_scanTunes.INC.dat

^{*} Figure out what's going on in cell_scanOrbits.INC.dat

2/ SR loss and spin diffusion in eRHIC FFAG2 cell

2.a - Get the material from there:

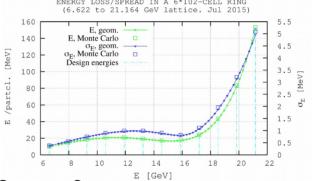
https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/FFAG/eRHIC-FFAG/FFAG2/SRLoss/


2.b – Let's see SR loss at top energy, 21.164 GeV

* The README says: [path2]/zgoubi-code/zgoubi/zgoubi -in SRLoss 21.16GeV.INC.dat

* Figure out what's going on in SRLoss_21.16GeV.INC.dat

* See spin diffusion, from the HISTO in zgoubi.res SX (long.) SY (radial)



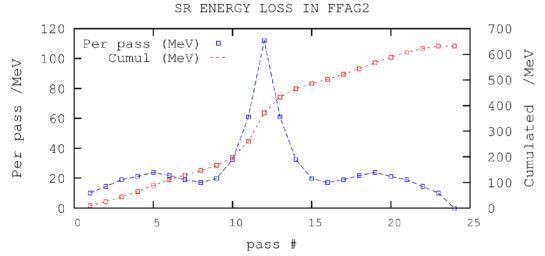
^{*} Suggestion: gnuplot using zgoubi.HISTO.out ...

2.b - We can try something in the lines below (slides 4, 9),

using REBELOTE to scan initial D=p/p_ref: [path2]/zgoubi-code/zgoubi/zgoubi -in SRLoss_21.16GeV.INC.dat

All 1,000 particles are logged in zgoubi.fai, pass by pass. Therefore, use gnuplot and awk to the get average and sigmas of energy loss, this graph.

Or a grep?
grep 'Average energy loss per particle per pass' zgoubi.res.
and btw, * 6 arcs * 102 cells er arc!

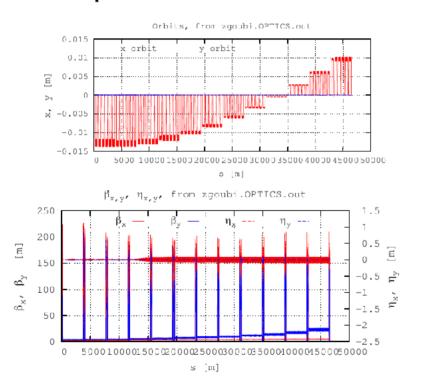

47_fmeot:/home/meot/zgoub	oi/SVN/exemples/FFAG/eRHIC-	FFAG/FFAG2/SRLoss\$ grep '	Average energy loss per particle per pass '
Average energy loss pe	er particle per pass :	13.67140 keV.	Relative to initial energy: 8.2856997E-07
	er particle per pass :	13.60228 keV.	Relative to initial energy : 8.2438046E-07
Average energy loss pe		17.88081 keV.	Relative to initial energy : 1.0836855E-06
Average energy loss pe		24.66686 keV.	Relative to initial energy : 1.4949614E-06
Average energy loss pe	er particle per pass :	33.43888 keV.	Relative to initial energy : 2.0265991E-06
		44.05808 keV.	Relative to initial energy : 2.6701866E-06
		56.52296 keV.	Relative to initial energy : 3.4256342E-06
		71.13720 keV.	Relative to initial energy : 4.3113455E-06
	er particle per pass :	86.38978 keV.	Relative to initial energy : 5.2357439E-06
	er particle per pass :	104.9274 keV.	Relative to initial energy : 6.3592386E-06
	er particle per pass :	124.2423 keV.	Relative to initial energy : 7.5298352E-06
		146.5472 keV.	Relative to initial energy : 8.8816482E-06
	er particle per pass :	170.5916 keV.	Relative to initial energy: 1.0338885E-05
47 fmeot:/home/meot/zgoub	oi/SVN/exemples/FFAG/eRHIC-	FFAG/FFAG2/SRLoss\$	

There is various other possibilities ... zgoubi.HISTO.out is one

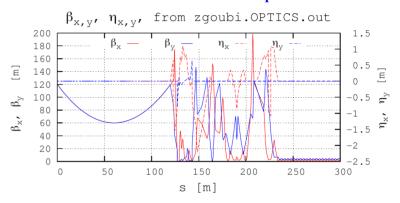
2/ GOTO keyword: useful to (for instance) assemble an ERL

2.a - Get the material from there:

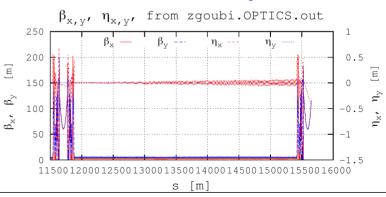
Typically, what we are looking for is this, 12 passes up, 11 passes down, in 1 go,:


Reasonable statistics requires ~1e3 particles

- * Figure out
- what is going on in upDown.INC.dat
- what's the role of GOTOs, how they work
- * What if I replace MCOBJET with OBJET[KOBJ=5] and uncomment OPTICS?


* OBJET[KOBJ=5] and OPTICS produce the orbit and optical functions, over the 12 loops, or segments:

• Orbits and optical functions : complete transport of initial values


5.3 to 21.1 GeV - 12 loops

• 5.3 to 6.622 GeV linac pass

• 9.2 to 11.9 GeV linac passes

We are done!

Thanks for your concentration

Have fun during this FFA'23 workshop