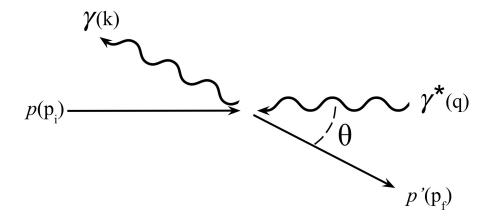


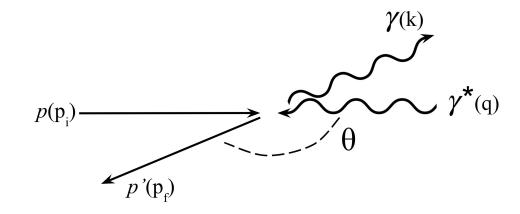
Investigation of Backward-Angle (*u*-channel) VCS and DVCS at the EIC

Zachary Sweger University of California, Davis

Supported in part by

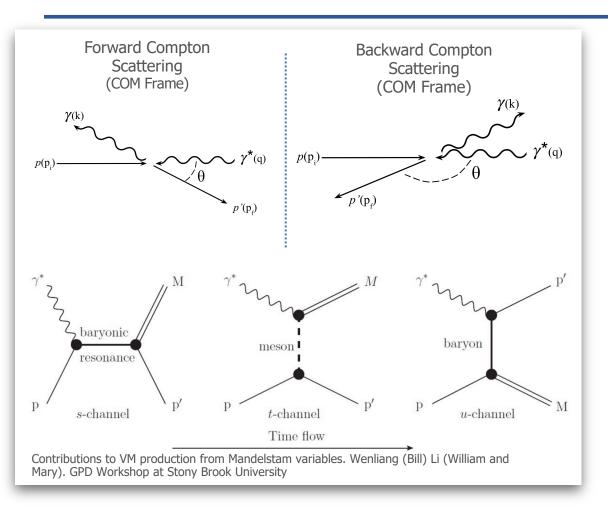


Forward and Backward Compton Scattering



Forward Compton Scattering (COM Frame)

Glancing collision, small momentum transfer


Backward Compton Scattering (COM Frame)

Backscattering, large momentum transfer

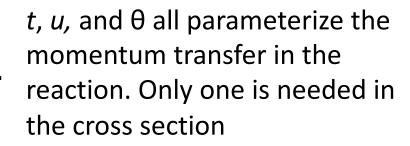
Backwards (*u*-channel) Compton Scattering

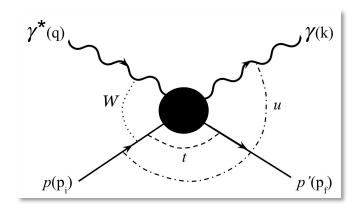
Forward vs Backward DVCS

- Forward Production
 - *t*-channel: low Mandelstam *t*, high *u*
 - Momentum transfer to target is small
 - γ is produced in backwards (e⁻-going) direction
 - Proton in forward direction
 - Proton rapidity only slightly modified
- Backwards Production
 - u-channel: low Mandelstam u, high t
 - Momentum transfer to target is large
 - γ produced in forwards (p-going) direction
 - Proton shifted in many units in rapidity

Kinematics

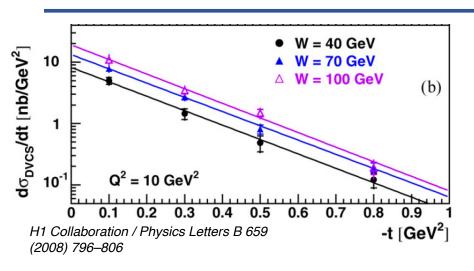
- DVCS can be parameterized in terms of
 - Q^2


•
$$W = \sqrt{s} = \sqrt{(p+q)^2}$$


•
$$|t| = |(p - p')^2|$$

•
$$|u| = |(p-k)^2|$$

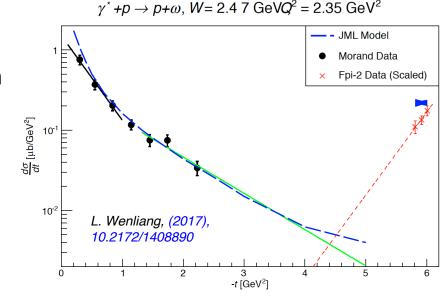
· ϕ



 ϕ describes rotation of γ p plane relative to γ^*e^- plane. This is a polarization observable, but does not affect rapidity distributions that we're studying

$$\frac{d^4\sigma[ep\to e'p'\gamma]}{dQ^2dWd\phi dt} = \Gamma(Q^2,W)\frac{d^2\sigma[\gamma^*p\to p'\gamma]}{d\phi dt}(Q^2,W,\phi,t)$$

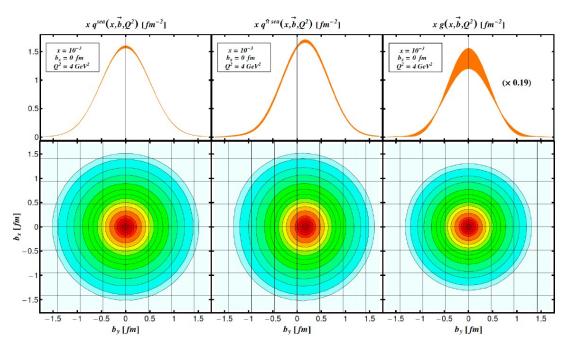
A *u*-channel Peak?



Typical Description of DVCS cross section

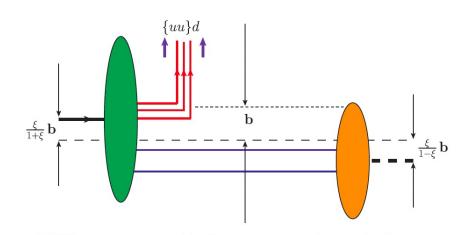
- Differential cross section at fixed Q² and W is typically modeled using an exponential of the form $e^{-b|t|}$
- The Fourier transform of this differential cross section encodes information about the proton GPDs in impact-parameter space
- So why care about cross section at very high |t|?

Non-trivial Behavior at High t


- We should start from the assumption that we should not expect photon production (DVCS) cross sections to be wildly different from vector-meson production cross sections (vector-meson dominance)
- Cross sections for vector (and non-vector) mesons see similar exponential drop-off in |t|, BUT also an exponential rise at the highest |t| values
- This is from u-channel contributions which may also be expected in DVCS

Meaning of *t*-channel Cross Section

Yellow Report, R. Abdul Khalek et al., arXiv:2103.05419.


Figure 7.46: Impact parameter distributions at x = 0.001 and $Q^2 = 4 \,\text{GeV}^2$ for unpolarized sea quarks in an unpolarized proton (left), a transversely polarized proton (middle), and for unpolarized gluons in an unpolarized proton (right), obtained from a combined fit to the HERA collider data and EIC pseudodata [23]. Top row: IPDs at fixed $b_x = 0$ as a function of $b = b_y$. Bottom row: density plots of IPDs in the (b_x, b_y) -plane.

Forward DVCS cross section → proton GPDs

- Differential cross section as a function of t encodes information about proton GPDs
- GPDs can be translated into an impact-parameter description of the proton via a Fourier transform in t
- Thus the forward DVCS cross section is meaningfully related to the parton structure of the proton

Meaning of *u*-channel Cross Section

ERBL: $x_3 = w_3 - \xi \ge 0$; $x_1 + x_2 = \xi - w_3 \ge 0$;

B. Pire, K. Semenov-Tian-Shansky, and L. Szymanowski, Phys. Rept. 940, 1 (2021), arXiv:2103.01079 [hep-ph].

Backward DVCS cross section → partonic correlations and baryon number?

- Recent (2021) work by Pire, Shansky and Szymanowski works to formulate a similarly meaningful interpretation of the backward cross section
- In this work they argue that backward reactions provide access to the location in impact parameter space of diquark and three-quark (shown at right) clusters
- In backward reactions the baryon number follows these clusters to form a "new" baryon

"baryon-to-meson (and baryon-to-photon) TDAs share common features both with baryon DAs and with GPDs and encode a conceptually close physical picture. They characterize partonic correlations inside a baryon and give access to the momentum distribution of the baryonic number inside a baryon. Similarly to GPDs, TDAs – after the Fourier transform in the transverse plane – represent valuable information on the transverse location of hadron constituents."

Our Backward DVCS Model: *u*-Dependence

Q²=0 GeV², W=1 GeV
Q²=0 GeV², W=3 GeV

)²=1 GeV², W=3 GeV

Modeling *u*-channel DVCS

- We presuppose a peak at backward angles ($u=u_0$) as is seen in meson production
- EIC will provide an opportunity to measure this peak if it exits, a task that is challenging in fixed-target experiments due to the softness of the photons produced
- The strategy: exploit similarities to t-channel

$$\frac{d\sigma}{dt}(t) \sim \exp(-B|t-t_0|) \longrightarrow \frac{d\sigma}{du}(u) \sim \exp(-D|u-u_0|)$$

- B and D are related to the size of production region which differs in t and u channels due to role of meson vs baryon exchange trajectories
- $\it D$ has not been measured for backward DVCS, so for our models we test values measured for backward ω

production

u (GeV²)

Our Backward DVCS Model: W-Dependence

Modeling W-Dependence

- Backward physics is dominated by Regge-exchange trajectories for which the cross sections typically scale with $W^{-\alpha}$ where $\alpha>0$
- In our backward ω/ρ paper, we used a data-driven $(W^2-m_p^{\ 2})^{-2.4}$ dependence

D. Cebra, Z. Sweger, X. Dong, Y. Ji, and S. R. Klein, Phys. Rev. C 106, 015204 (2022).

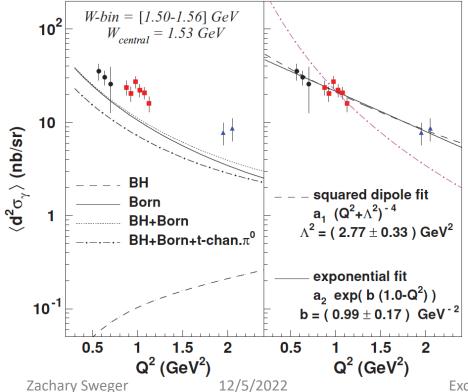
• Several sources suggest rough $(W^2-m_p^2)^{-2}$ scaling which is what we start from.

G. Laveissi`ere et al., Physical Review C 79 (2009), 10.1103/physrevc.79.015201.

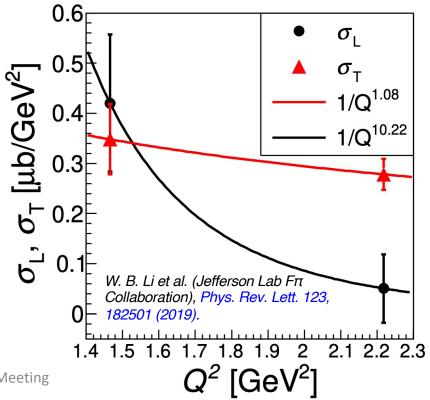
S. J. Brodsky, F. J. Llanes-Estrada, and A. P. Szczepaniak, Phys. Rev. D 79, 033012 (2009).

W. B. Li et al. (Jefferson Lab $F\pi$ Collaboration), Phys. Rev. Lett. 123, 182501 (2019).

$$\frac{d\sigma}{du}(W,u) \sim \frac{1}{(W^2 - m_p^2)^2} \exp(-D|u - u_0|)$$


Our Backward DVCS Model: Q²-Dependence

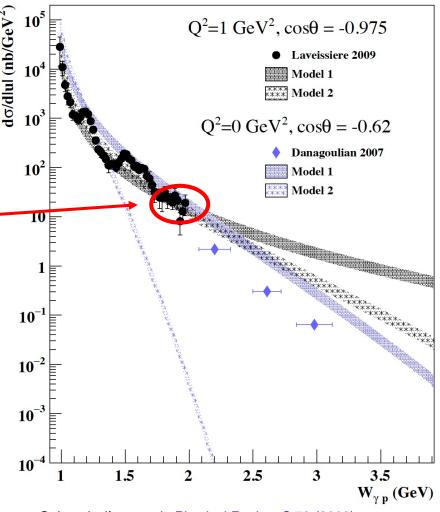
Backward VCS in Resonance Region


- There is some limited data available for this
- For backward VCS in the resonance region, JLab measured $(Q^2+2.77 \text{ GeV}^2)^{-4}$ dependence

G. Laveissi`ere et al., Physical Review C 79 (2009), 10.1103/physrevc.79.015201.

Backward ω Production Above Resonance

- Polarization-dependent cross section
- Q²-dependence is much softer for transverselypolarized photons.
- Needs to be explored further in our simulations


Full Cross Section Behavior

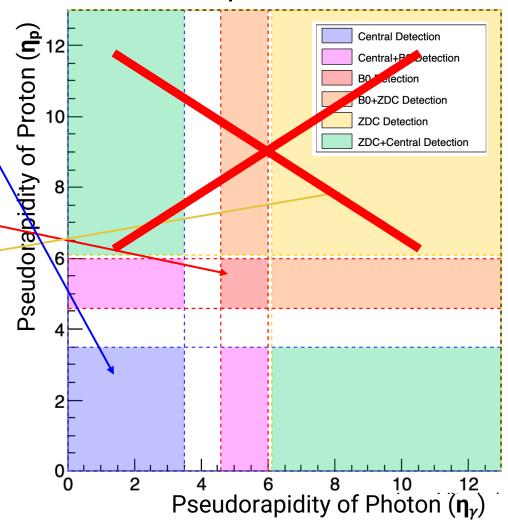
We combine these contributions to yield the form:

$$\frac{d\sigma}{du}(Q^2, W, u) \approx \frac{A \exp(-D|u - u_0|)}{(W^2 - m_p^2)^2 (Q^2 + \Lambda^2)^4 / \text{GeV}^8}$$

- In order to anchor the amplitude, we can fit this model to 11 VCS (Q²=1 GeV²) data points from JLab from 1.77<W<1.96 GeV (above strong resonances)
- Where
 - $\Lambda^2 = 2.77 \text{ GeV}^2$
 - Model 1: D = 2.4 GeV⁻², A = 32 μ b/GeV²
 - Model 2: D = 21.8 GeV⁻², A = 65 μ b/GeV

G. Laveissi ere et al., Physical Review C 79 (2009), 10.1103/physrevc.79.015201.

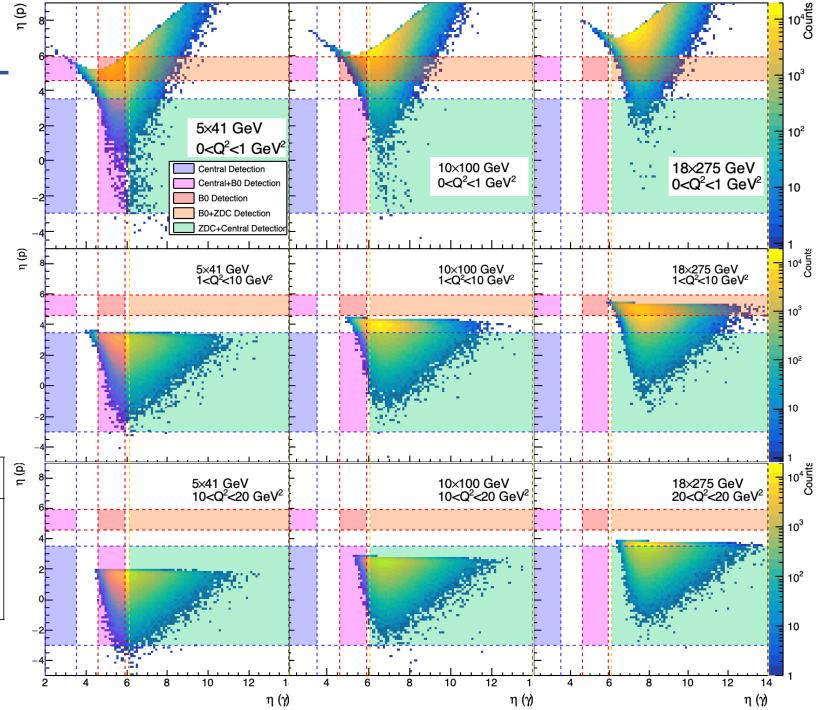
A. Danagoulian et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 98, 152001 (2007) 11


Detectors of Interest For *u*-channel Production

There are three detector regions of interest for backwards production

- Central Region (endcap & barrel): $|\eta| < 3.5$
 - √ Charged-particle tracking (ρ)
 - ✓ Electromagnetic calorimetry (ω)
- B0 Magnets: 4.6 < η < 6.0
 - √ Charged-particle tracking (ρ)
 - ? Electromagnetic calorimetry (ω)
- ZDC: $\eta > 6.215-5.991$
 - ✓ Electromagnetic calorimetry (ω)

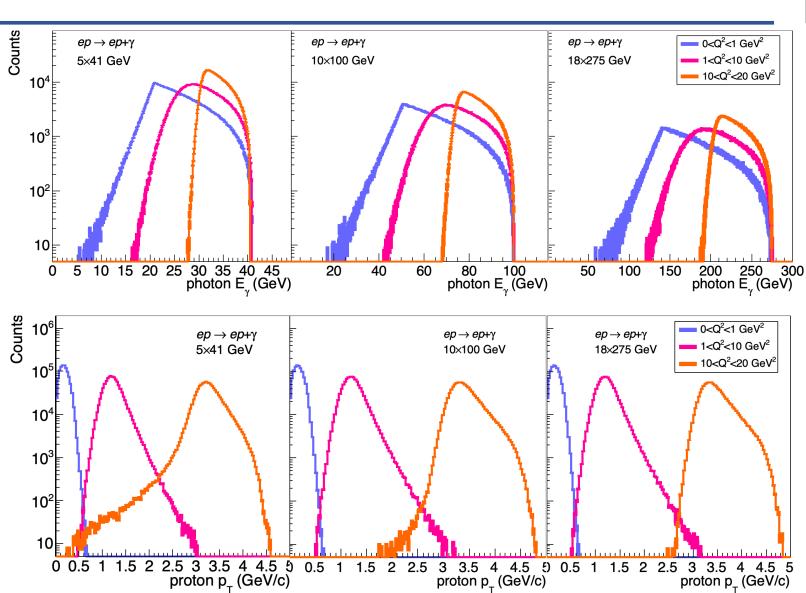
Proton may be detected in central or B0 detectors but not the ZDC. Photons may be detected in central, B0 or ZDC



Backward DVCS Acceptances

- These simulations used Model 2 for W>1.3 GeV
- At low collision energies, the photon will be seen in the BO and ZDC
- At high energies, the ZDC is critical
- At very low Q², the proton will be seen mostly in the B0
- At high Q², the proton lands almost exclusively in the central detector region
- Geometric efficiency estimates:

Proton	$p + \gamma$ eff.	$p + \gamma$ eff.	$p + \gamma$ eff.
beam energy	$Q^2 < 1$	$1 < Q^2 < 10$	$10 < Q^2 < 20$
41 GeV w/o B0	12%	35%	44%
41 GeV w/ B0	62%	88%	86%
100 GeV w/o B0	23%	30%	97%
100 GeV w/ B0	29%	30%	97%
275 GeV w/o B0	46%	68%	68%
275 GeV w/ B0	46%	68%	68%


12/5/2022

Kinematics of Final-State Particles

- Final-state photons in the B0 and ZDC will be between 10 and 275 GeV
- Protons from low-Q² events will have low pT
- Moderate pT for high-Q² events will aid detection but the potentially rapid drop-off of the cross section with Q² may prevent this

Conclusions and Outlook

- Backward production is interesting, in its own right, for encoding unique information about proton GPDs, an active and evolving topic of research
- Measurements at the EIC can improve our understanding of these u-channel mechanisms as well as their contribution to the t-channel background near-threshold
- Our backward DVCS model is still under development
- Early simulations demonstrate importance of B0 and ZDC calorimetry especially for high-energy photons.
- Next step are to
 - Finalize and compare models
 - Generate event samples for simulations
 - Write up results

Thank you for your attention!

zwsweger@ucdavis.edu