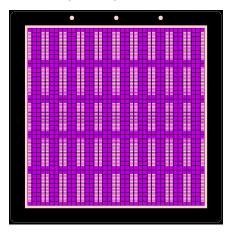
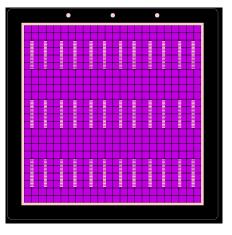
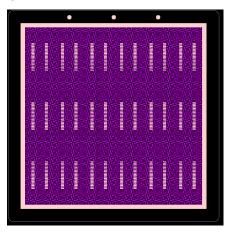

Meeting with Makoto Tabata (Chiba University)

-> organized by the project; attended by pf(m/d)RICH representatives


- Presently produce 15cm x 15cm x 2.5cm tiles for J-PARC (n ~ 1.04)
- Shaped by water jetting
- Can go up to ~20cm size
- n-1 variation +/- 1.5%
- $n \sim 1.03$ is the easiest to produce, and it shows highest transparency
- Should be possible to produce ~5cm size tiles with optical quality sides
 - No water jetting (but a special mold needed)
- Next steps do be defined soon (formulate more specific requirements by ePIC, request samples for beam tests, etc)

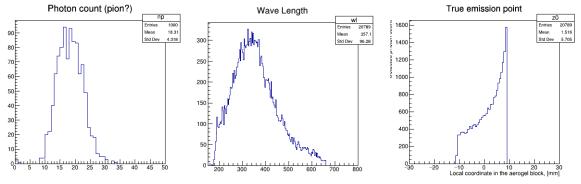
HRPPD re-design effort for EIC

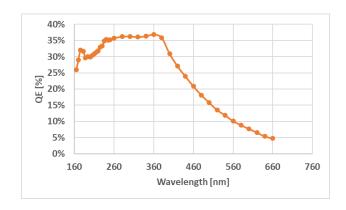

Variety of HRPPD anode base plate pixellation, with 40-pin Samtec connector footprints on the outer side


32 x 32 square pads (present layout)

40 x 40 square pads (DIRC)

24 x 24 square pads (pfRICH)

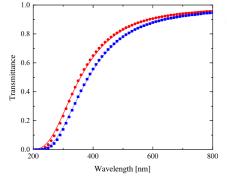



24 x 24 charge sharing pads (pfRICH)

- Polish ceramic manufacturer (Techtra) claims they can produce such layouts in house
- First iteration will be a test bench HRPPD tile with a mixed layout, to test them all at once
 - AK to provide a final set of drawings for this layout
 - Tooling and fabrication will take 2-3 months

Wavelength range (last week)

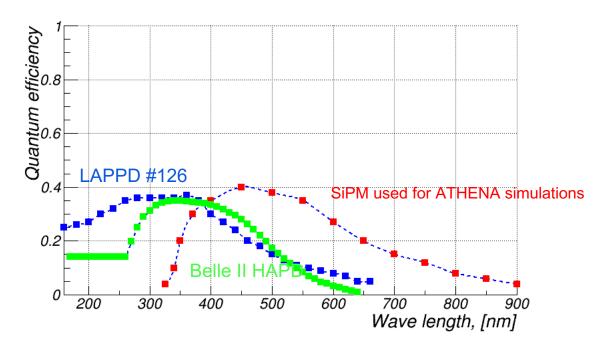
• Is it really hopeless to work with aerogel in a deep UV range?



HRPPD 126 QE curve

<Property name="RAYLEIGH" unit="eV"> <value energy="1.500">495.305 <value energy="1.675">368.992</value> <value energy="1.850">276.148</value> <value energy="2.025">208.910</value> <value energy="2.200">159.280</value> <value energy="2.375">122.311 <value energy="2.550">94.4909</value> <value energy="2.725">73.5915 <value energy="2.900">58.2796</value> <value energy="3.075">46.5131</value> <value energy="3.250">37.2842 <value energy="3,425">30,1133</value> <value energy="3.600">24.4282 <value energy="3.775">19.7740</value> <value energy="3.950">16.1085 <value energy="4.125">13.0108 <value energy="4.300">10.6804</value> <value energy="4.475">8.74212 <value energy="4.650">7.22615</value> <value energy="4.825">6.03070 <value energy="5.000">5.02443</value> <value energy="5.175">4.3785 <value energy="5.350">3.8331</value> <value energy="5.525">3.3701</value> <value energy="5.700">2.9749</value>

Belle II aerogel#1 in pfRICH GEANT simulations


$$\frac{dE}{dx} = 4\pi^2 e^2 \int_{\beta n > 1} \frac{1}{\lambda^3} \left(1 - \frac{1}{\beta^2 n^2} \right) d\lambda$$

~5mm @ 250nm (units: [mm])

Fig. 2. Transmittance as a function of wavelength for the Belle II RICH aerogel samples of n=1.045 (red) and 1.055 (blue) [2]. The thickness for both samples is 20 mm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Obviously, more studies needed

Wavelength range (update)

- Samo, Luka (Ljubljana): no acrylic filter used in Belle II
 - make use of all near UV photons within the HAPD QE range

-> we have all reasons to do the same in ePIC pfRICH