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Muon beams worldwide
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Note: See the back-up 

for a summary table



Muon beams worldwide associated to “present” experiments
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PSI’s muon beams

590 MeV proton 
ring cyclotron 

1.4 MW

• PSI delivers the most intense continuous (DC) low momentum (surface) muon beam in the world up to few x 108  mu/s (28 MeV/c, 
polarised beam (Intensity Frontiers)
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MEGII / Mu3e Experimental area

Proton RF ~ 50 MHz 
“DC” muon beam

“Muon” Target “E” 
production

4.6· 108 µ+/s 

1.4· 108 µ+/s 



The MEGII and Mu3e beam lines

The MEGII

• MEGII and Mu3e (phase I) similar beam requirements: 
• Intensity O(108 muon/s), low momentum p = 28 MeV/c 
• Small straggling and good identification of the decay region 

• MEG II beam settings released since 2019. More then 10^8 mu/s can be transport into Cobra  (up to 1.6e8@2.2 mA during the 2022 
beam time) 

• A dedicated compact muon beam line  (CMBL) sharing a large fraction of the native piE5&MEG elements will serve Mu3e 
• Proof-of-Principle: Delivered 8 x 107 muon/s during 2016 test beam (up to 1e8@2.4 mA during the 2022 beam time with the full 

assembled Mu3e beam line)
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The MEGII and Mu3e beam lines

The Mu3e
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• Proof-of-Principle: Delivered 8 x 107 muon/s during 2016 test beam (up to 1e8@2.4 mA during the 2022 beam time with the full 
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PSI’s muon beams
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• Muon beams: secondary beam lines 
• Low-energy muon beam lines typically tuned 

to surface-μ+ at  ~ 28 MeV/c 
• Note: surface-μ —> polarised positively 

charged muons (spin antiparallel to the 
momentum) 

• Contribution from cloud muons at similar 
momentum about 100x smaller 

• Negative muons only available as cloud muons

π+

μ+

surface muons 
stopped pion decay

x

π+/-

μ+/-

cloud muons 
pion decay-in-flight

protons

𝝅+ 𝛎𝝁+

Spin vector

Momentum vector



How the beam intensity can be increased…
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How the beam intensity can be increased…
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How the beam intensity can be increased…
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1. “at the source”
2. “at the target production”

3. “at the beam line”

4. “at the beam dump”



How the beam intensity can be increased…
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Always looking for —> Relative “simple”, “easy”, “fast” and “cheap” solutions



At the target:
• Optimised Target: Alternative materials or different geometry 

• Search for high pion yield materials -> higher muon yield 
• Either increasing the surface volume (surface area times acceptance depth) or the pion stop density near the surface
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relative  µ+yield  ∝  π +stop  density ⋅µ+Range ⋅ length

 ∝n ⋅σπ + ⋅SPπ + ⋅
1

SPµ+

⋅ ρC (6 /12)C
ρx (Z / A)x

∝Z 1/3 ⋅Z ⋅ 1
Z
⋅ 1
Z

∝ 1
Z 2/3

p

π+
μ+

• Several materials have pion yields > 2x Carbon 
• Relative muon yield favours low-Z materials, but difficult to construct as a target 
• B4C and Be2C show 10-15% gain

Forked

x 1.4x 1.1

Standard Grooved Trapezoidal Forked Slanted

x1 x1.1 x1.4 x1.5note: Each geometry was required to preserve, as best as 
possible, the proton beam characteristics down-stream of 
the target station (spallation neutron source requirement)



Slanted target: Prototype test

+60%

+30%
+30%
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New Target Old Target

Graphite Graphite 

• Impact of the optimised target: 
• Put into perspective the target optimisation only, corresponding to 50% of muon beam intensity gain, would 

corresponds to effectively raising the proton beam power at PSI by 650 kW, equivalent to a beam power of 
almost 2 MW without the additional complications such ad increased energy and radiation deposition into 
the target and its surroundings 



At the beam line
• Optimised the beam line: increased capture and transmission
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500 mm 250 mm

solenoid
500 mm aperture

500 mm250 mm

solenoid
500 mm aperturep

• Two normal-conducting, radiation-hard solenoids close 
to target to capture surface muons 
• Central field of solenoids ~0.35 T 
• Field at target ~0.1 T

• A quasi “pure” solenoidal beam line to increase the 
transmission



At the beam line
• Optimised the beam line: increased capture and transmission
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500 mm 250 mm

solenoid
500 mm aperture

500 mm250 mm

solenoid
500 mm aperturep

• Two normal-conducting, radiation-hard solenoids close 
to target to capture surface muons 
• Central field of solenoids ~0.35 T 
• Field at target ~0.1 T

• A quasi “pure” solenoidal beam line to increase the 
transmission

HIMB project at PSI. Aim: O(1010 muon/s); Surface (positive) muon 
beam (p = 28 MeV/c); DC beam 



A quick departure: The HiMB project at the beam dump
• Source simulation (below safety window):  

9 x 1010 surface-μ+/s @ 1.7 mA Ip 
• Profit from stopping of full beam 
• Residual proton beam (~1 MW) dumped on SINQ 

• Replace existing quadrupoles with solenoids: 
• Preserve proton beam footprint  
• Capture backward travelling surface muons 

• Extract muons in Dipole fringe field 
• Backward travelling pions stopped in beam window 

• Capturing turned out to be difficult : 
• Large phase space (divergence & ‘source‘ extent) 
• Capture solenoid aperture needed to be increased, 

but constrained by moderator tank 
• High radiation level close to target 

• Due these constraints and after several iterations 
with different capturing elements: 
• Not enough captures muons to make an 

high intensity beam  
• Alternative solution: HiMB @ EH

p

π+

μ+

SINQ spallation target
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The muCool project at PSI
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• Aim: low energy high-brightness muon beam 
• Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm 
• Increase in brightness by a factor 1010 with an efficiency of O(10-4)

Standard/secondary μ+ beam 
• 𝛔 = 10 mm 
• E = 4 MeV 
• Continuous 

muCool/tertiary μ+ beam 
• 𝛔 < 1mm 
• E < eV 
• Tagged 

D. Taqqu, PRL 97 (2006) 194801



Trajectories in E and B field

=

gas  =+

In gas: collisions 
with frequency fcol 
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PhD I. Belosevic



Working principle: 1st Stage 
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I. Belosevic



Summary: The muCool project at PSI
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• Aim: low energy high-brightness muon beam 
• Phase space reduction based on: dissipative energy loss in matter (He gas) and position dependent drift of muon swarm 
• Increase in brightness by a factor 1010 with an efficiency of O(10-4) 
• Longitudinal and transverse compression (1st stage + 2nd stage): experimentally proved  
• Next Step: Extraction into vacuum 
• Current activity: abundant MC simulations in order to define the detailed experimental setup for the beam extraction in vacuum and eventually the beam re-acceleration

Detector 1

Detector 2
In gas: collisions 

with frequency fcol 

tan𝜃 ∝ 𝑓𝑐𝑜𝑙

Transverse 
Compression

Longitudinal 
Compression

Longitudinal+ 
Transverse 
Compression



The MEGII experiment at PSI

x2 Resolution 
everywhere

New electronics:
WaveDAQ
~9000 
channels at 
5GSPS

Single volume 
He:iC4H10

35 ps resolution 
w/ multiple hits

Full available 
stopped beam 
intensity 
7 x 107

Better uniformity w/ 
12x12 VUV SiPM

Updated and
new Calibration 
methods
Quasi mono-
chromatic positron 
beam

x2 Beam Intensity 

Background rejection

•  Best upper limit on the BR (μ+ → e+ γ) set by the MEG experiment (4.2 10-13  @90% C.L.) 
•  Searching for μ+ → e+ γ with a sensitivity of ~ 6 10-14   
•  Five observables (Eg, Ee, teg, ϑeg, ϕeg) to identify μ+ → e+ γ events
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A step back: The MEG experiment
•The MEG experiment aims to search for μ+ → e+ γ with a sensitivity of ~10-13  (previous upper limit BR(μ+ → e+ γ) ≤ 1.2 x 10-11 

@90 C.L. by MEGA experiment) 
•Five observables (Eg, Ee, teg, ϑeg, ϕeg) to characterize μ→ eγ events

B(µ+ ! e+�) < 4.2⇥ 10�13

Full data sample: 
2009-2013 

Best fitted branching ratio 
at 90% C.L.:
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A. Baldini et al. (MEG Collaboration), 
Eur. Phys. J. C73 (2013) 2365

A. Baldini et al. (MEG Collaboration), 
Eur. Phys. J. C76 (2016) no. 8, 434 



MEG: The key elements
1. The world’s intense low momentum muon beam stopped in a thin and slanted target 

2. The gradient field e+-spectrometer 
3. The innovative Liquid Xenon calorimeter 

4. The full waveform based DAQ (digitization up to 1.6 GSample/s)  
5. Complementary calibration and monitoring methods

 [MeV]γE
0 5 10 15 20

N
um

be
r 

of
 e

ve
nt

s

0

200

400

600

800

1000

1200
Boron lines

Lithium line

2

4

5

1

3



The MEG experiment vs the MEGII experiment
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The MEG experiment vs the MEGII experiment
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Where we will be

k factor (x 1011)

MEGII
MEG

~ 6 x 10-14
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Latest news and currents status

Key points:  
• Run2021 very successful 
• Electronics fully installed and tested with all sub-detectors and calibration 

tools 
• All calibration and physics trigger configurations released 
• Assessed performances of each sub-detectors in the final MEG II 

conditions  
• Collected data at different beam intensities  
• Dedicated RMD at reduced beam intensity as proof-of-principle of the 

experiment quality 
• Physics run started at the end of September 2021 
• …with the COVID19 outbreak ongoing 

Outlook: 
• MEGII beam time 2022 started on June 7th 
• The run with muons has been completed on Nov 17th  
• MEG sensitivity expected to be surpassed by the Run 2022 and 

actually fully addressed it  
• MEG 2022 the MOST efficient physics run compared to all the 

others (including MEG) physics run!!! 
• Calibration of the detectors with pion beam currently ongoing 
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MEGII fully installed! Data from the first Physics Run2021



MEGII: A very successful physics run 2022…
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• A large amount of 
data already collected 

• Intense work on the 
analysis to be ready 
with all the algorithms 
for the mu e gamma 
search 

• Data taking will 
continue the next 
years to achieve the 
final sensitivity



The Mu3e experiment at PSI
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• The Mu3e experiment aims to search for μ+ → e+ e+ e- with a sensitivity of ~10-15   (Phase I) up to down ~10-16  (Phase II). 
Previous upper limit BR(μ+ → e+ e+ e- ) ≤ 1 x 10-12 @90 C.L. by SINDRUM experiment) 

• Observables (Ee, te, vertex) to characterize μ→ eee events
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The pixel tracker: The principle

Momentum with re-curlersTracking in the spacial and scattering dominated regime

• Central tracker: Four layers; Re-curl tracker: Two layers 

• Minimum material budget: Tracking in the scattering dominated regime
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The pixel tracker: The performances
• Momentum resolution: < 0.5 MeV/c over a large phase space 
• Geometrical acceptance: ~ 70% 
• X/X0 per layer: ~ 0.011% 
• Vertex resolution: < 200 μm 
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The pixel tracker: Overview

Re-curl stations Central stations

• Central tracker: Four layers; Re-curl tracker: Two layers 

• Minimum material budget: Tracking in the scattering dominated regime 

• Momentum resolution: < 0.5 MeV/c over a large phase space; Geometrical acceptance: ~ 
70%;  X/X0 per layer: ~ 0.011%
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The pixel tracker: The MuPix detector

MuPix8 Mupix 7 telescope

Prototype Active Area 
[mm2]

MuPix1 1.77

MuPix2 1.77

MuPix3 9.42

MuPix4 9.42

MuPix6 10.55

MuPix7 10.55

Ivan Peric, 
Nucl.Instrum.Meth. A582 
(2007) 876-885 
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• Based on HV- MAP: Pixel dimension: 80 x 80 μm2 , Thickness: 50 μm , Time resolution: < 20 ns, 
Active area chip: 20 x 20 mm2 , Efficiency: > 99 %, Power consumption : < 350 mW/cm2 

• MuPix 7: The first small-scale prototype which includes all Mu3e functionalities 
• MuPix 8, the first large area prototype: from O(10) mm2 to 160 mm2 : Ready and extensively tested! 
• MuPix 9, small test chip for: Slow  Control, voltage regulators and other test circuits. 2019 year test 

beam campaign  
• MuPix 10, towards the final version: 380 mm2



The timing detectors: Fibers and tiles
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• Precise timing measurement: Critical to reduce the accidental BGs 
• Scintillating fibers (SciFi) O(1 ns), full detection efficiency (>99%) 
• Scintillating tiles O(100 ps), full detection efficiency (>99%)



The timing detectors: Fibers and tiles
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• Precise timing measurement: Critical to reduce the accidental BGs 
• Scintillating fibers (SciFi) O(1 ns), full detection efficiency (>99%) 
• Scintillating tiles O(100 ps), full detection efficiency (>99%)



SciFi prototypes: Results

SiPM Array:
Hamamatsu S13552-HQRFibre ribbons:
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• Studied a variety of fibres (SCSF 78 MJ, clear; SCSF 78 MJ, with 20% TiO2; NOL 11, clear; NOL 11, with 20% TiO2; SCSF 81 MJ, 
with 20% TiO2; BCF12 clear;  BCF12, with 100 nm Al deposit) 

• Confirmed full detection efficiency (> 96 % @ 0.5 thr in Nphe ) and timing performances for multi-layer configurations (square and 
round fibres) with several prototypes: individual and array readout with standalone and prototyping (STiC) DAQ



Tile Prototype: Results
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• Mu3e requirements fulfilled: Full detection efficiency ( > 99 %) and timing resolution O (60) ps 
• 4 x 4 channel BC408 
• 7. 5 x 8. 5 x  5. 0 mm3 
• Hamamatsu S10362-33-050C (3 x 3 mm2 ) 
• readout with STiC2



Mu3e Phase I sensitivity

Different signal BR

Combinatorial Bkg
Irreducible Bkg Additional suppression due 

to Timing detectors
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Latest news and currents status
Key points:  
• First integration Run 2021 
• Inner MuPix layer 
• SciFi ribbons 
• Sub-detector services  

• Full beam line commissioning 2022 
• Very successful: TDR promised values matched! 

• 2.49e108 mu/s @2.4 mA (at the collimator): The highest beam rate 
in pie5 at the collimator 

• 1.02e108 mu/s @2.4 mA (Mu3e magnet): Several beam 
configurations studied, some of them connected with possible 
Mu3e magnetic field intensity optimisation  

Outlook: 
• Cosmic Ray Run ongoing outside the experimental area with all sub-

detector services 
• MuPix mass production: ongoing 
• Complete integration run: 2023 
• Engineering run: 2024 
• First physics run: 2025 

Beam commissioning 2022
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2.49e108 mu/s @2.4 mA

Full analysis performed on  
Simulated data



muEDM final at PSI: Frozen spin and longitudinal injection
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p=125 MeV/c  [muE1]



EDM search: From the “frequency” approach…
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𝜔a 𝜔e

• i.e. FNAL: The decay positrons are recorded 
using calorimeters and straw tube trackers 
inside the storage ring  

• The sensitivity to a muon EDM is limited by the 
resolution of the vertical amplitude, proportional 
to 𝜁, of the oscillation in the tilted precession 
plane  

• i.e. J-PARC: even if the technique is different 
the sensitivity to an EDM is limited by the 
resolution of the vertical amplitude



…to the frozen-spin technique

43

𝜔a 𝜔e

• The frozen-spin technique uses an Electric field 
perpendicular to the moving particle and magnetic field, 
fulfilling the condition:  

• Without EDM, 𝜔 = 0, the spin follows the momentum 
vector as for an ideal Dirac spin-1/2 particle, while with an 
EDM it will result in a precession of the spin with 𝜔e II Ef 

• The sensitivity to a muon EDM is given by the asymmetry 
up/down of the positron from the muon decay



EDM: From the “frequency” approach to the frozen-spin technique
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• Putting everything together, here a summary:



The muEDM at PSI: The general experimental idea
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• The sensitivity to a muon EDM is given by the asymmetry up/down of the positron from the muon decay. Positrons are emitted 
predominantly along the muon spin direction



Outlook

• Next generation on muon based experiments require higher muon rates 
• New opportunities for future muon (particle physics) based experiments 
• New opportunities for μSR experiments 

• Different experiments demand for a variety of beam characteristics: 
• DC vs pulsed 
• Momentum depends on applications: stopped beams require low momenta 
• Phase space 

• Beam with different characteristics are/will be available worldwide 

• PSI is working, and will continue to do it, to keep muon based researchers at the frontier
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