CREOL The College of Optics & Photonics

University of Central Florida

10 K.

Current State of the Art High Intensity and Ultrashort Laser Systems

Peter J. Delfyett University Distinguished Professor, Optics, EE, Physics Pegasus Professor, Trustee Chair Professor CREOL, The College of Optics & Photonics Director, Townes Laser Institute

Prof. Peter J. Delfyett delfyett@creol.ucf.edu

Outline

- Introduction What's State of the Art?
 - High Power Ultrafast Lasers for Accelerators
 - Typical Techniques
 - Pulse Generation via Mode-locking
 - Stabilization for Single Cycle Generation
 - Amplification Techniques
 - Chirped Pulse Amplification
 - Regenerative or Optical Parametric Amplification
 - High Average Power Systems
- National Facilities LaserNetUS
- Summary

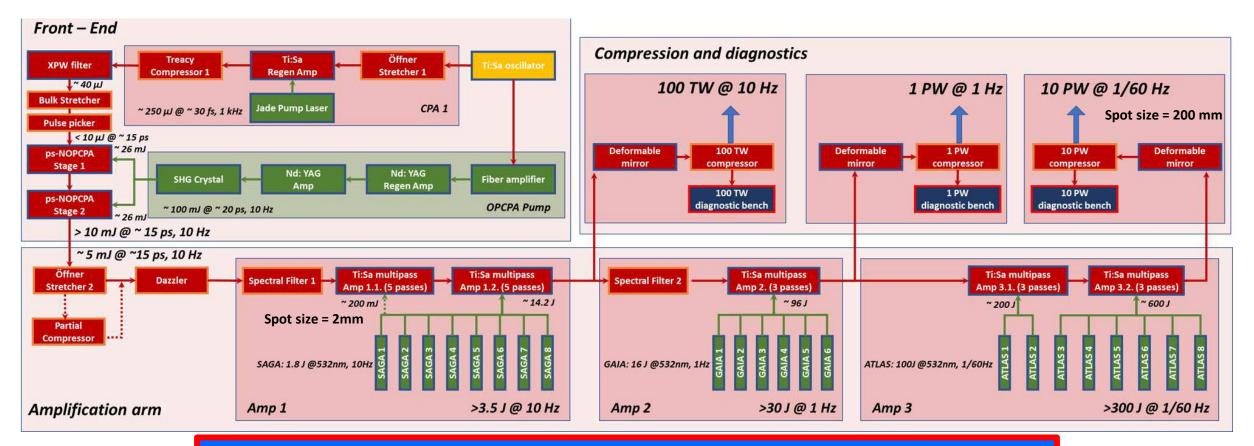
What's "State of the Art"

Extreme Light Infrastructure

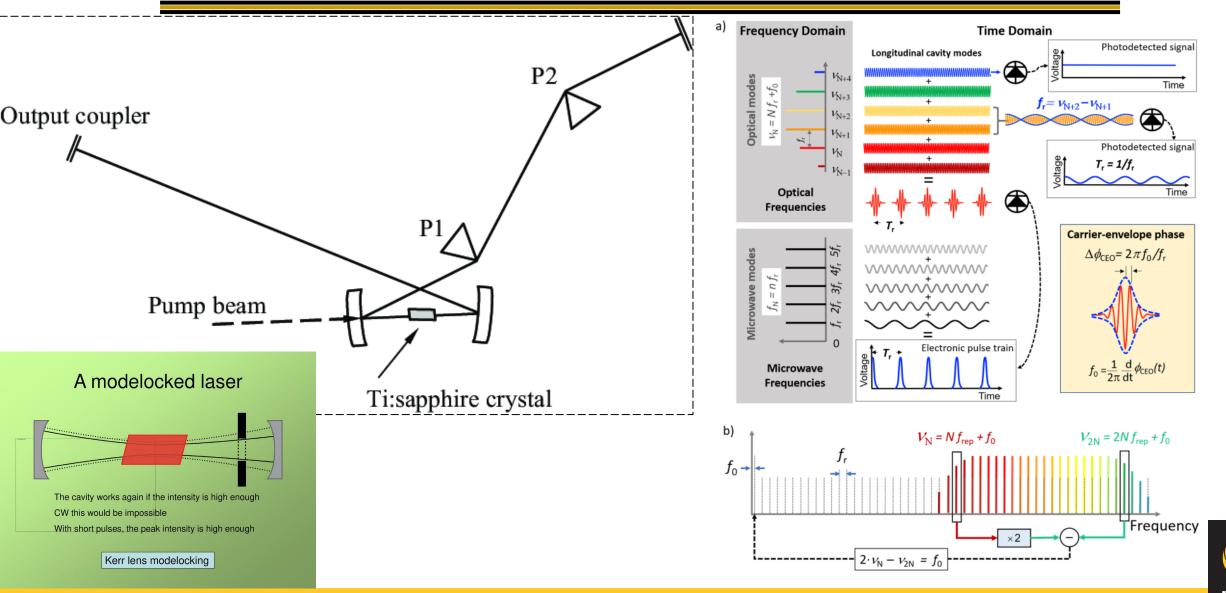
 ELI- 10 PW (22fsec @1.1 um spot → 10²⁴ W/cm²)
 1.2 urad pointing (use wavefront correction and stabilization)

What's "State of the Art"

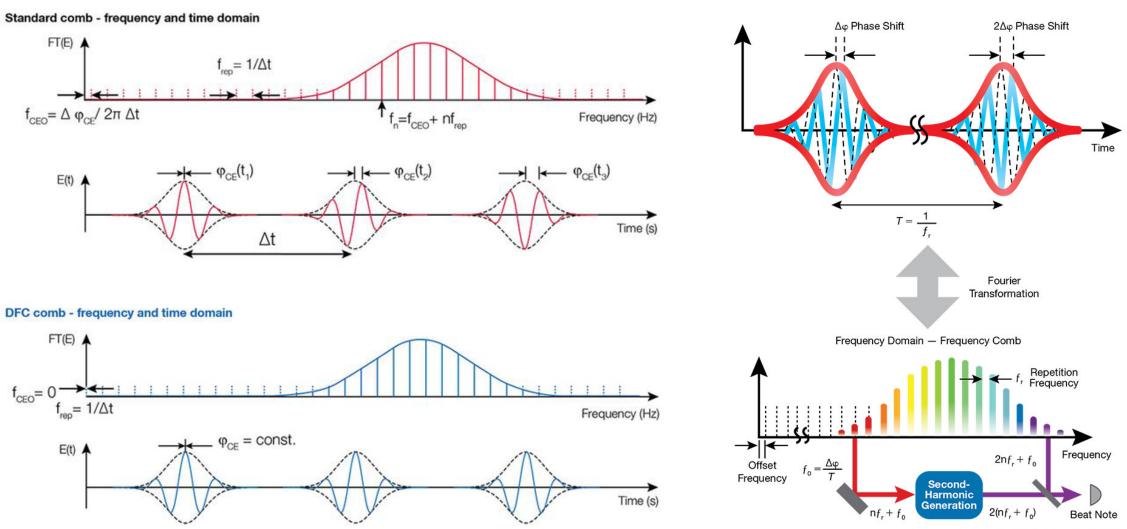
Center for Relativistic Laser Science



 CoReLS –4 PW (10²⁴ W/cm²) 1.7 urad pointing (use wavefront correction and stabilization)


"State of the Art" – ELI

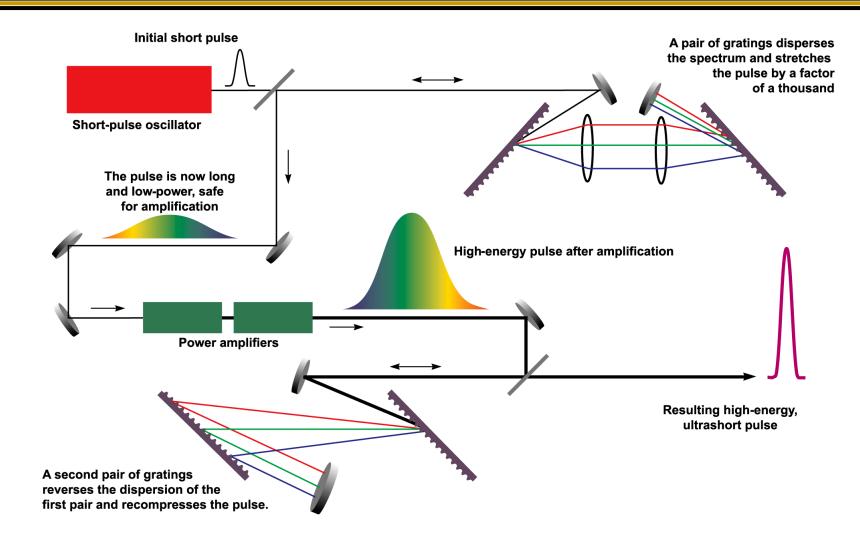
Block diagram of FE and one amplification arm with the three corresponding outputs: 100 TW at 10 Hz, 1 PW at 1 Hz, and 10 PW at 1 shot/min repetition rate. Pulsewidth 20 fsec; spot size ~ 1 um, focused intensity – 10²⁴ W/cm² Next: → 100 PW (50 cm xtal w/ NOPCPA)



How is it done? The Technology – Mode-locked Laser Oscillator - KLM

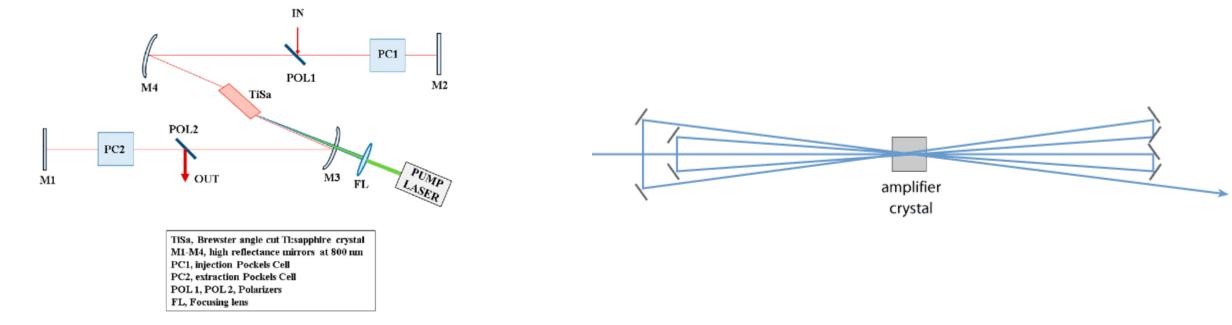
UCF

How is it done? The Technology – Stabilizing the Carrier Envelope Offset (2005 Nobel)

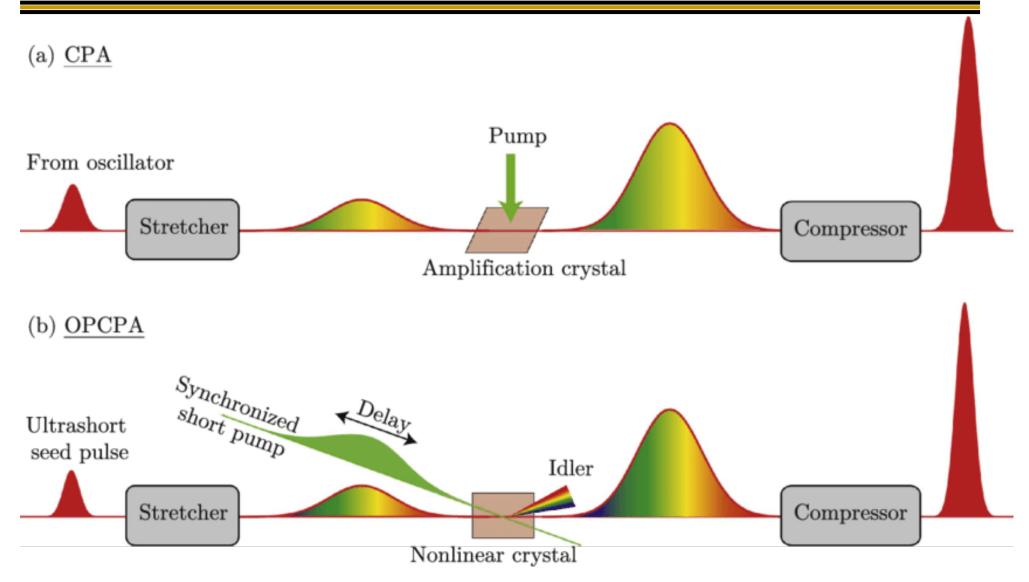


 $f_0 = 2(nf_r + f_0) - (2nf_r + f_0)$

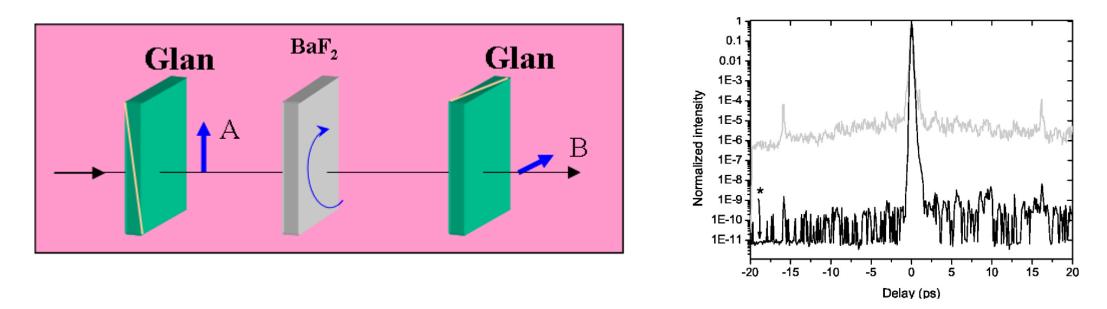
Time Domain - Femtosecond Pulse Train



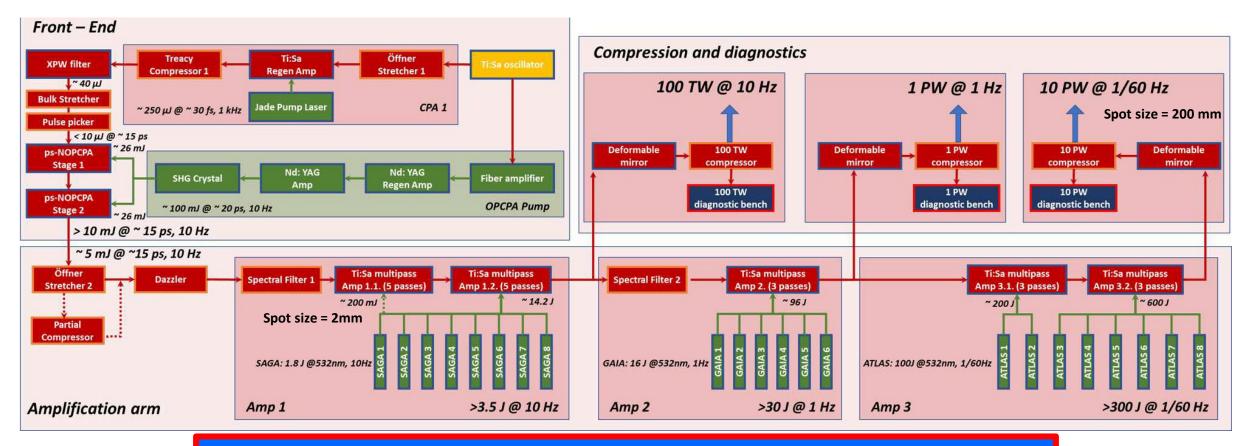
How is it done? The Technology – Chirped Pulse Amplification (2018 Nobel)


How is it done? The Technology – Regenerative vs. Multi-pass Amplification

Typically uses many passes for high gain Maintains mode size, but adds dispersion Typically for maximum energy extraction Fewer passes, complication alignment for many passes Lower long term alignment stability


How is it done? The Technology – Conventional vs Parametric Amplification

How is it done? The Technology – Nonlinear Polarization Rotation


Cross Wave Polarization Filter (XPW) to <u>Improve Pulse Contrast</u> ~10¹², 30% conversion efficiency (nonlinear polarization rotation)

Intensity Autocorrelation showing Improved Pulse Contrast

"State of the Art" – ELI and CoReLS

Block diagram of FE and one amplification arm with the three corresponding outputs: 100 TW at 10 Hz, 1 PW at 1 Hz, and 10 PW at 1 shot/min repetition rate. Pulsewidth 20 fsec; spot size ~ 1 um, focused intensity – 10²⁴ W/cm² Next: → 100 PW (50 cm xtal w/ NOPCPA)

Commercially Available State of the Art

Pulsar PW

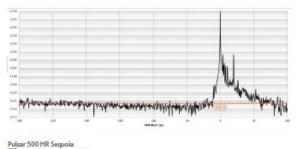
Ultra intense ultrafast laser

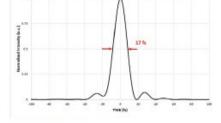
State-of-the-art Ultra Intense Ultrafast Lasers

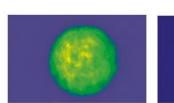
Pulsar PW is the ultimate light source dedicated to high field science, offering the best-in-class performance and bringing industrial-grade reliability to Science. Drawing on our large portfolio of pump lasers and solutions for effective thermal management, the Pulsar PW systems are designed for low (1 shot/min to 0.1 Hz) or high (1-5 Hz) repetition rates. This laser family has been designed to ensure the highest temporal quality at both femtosecond and picosecond timescales with optimized beam quality. Pulsar PW reaches the highest intensities with unsurpassed energy and pointing stabilities.

Pulsar PW comes with an embedded, flexible and user friendly monitoring and control software to further enhance the user experience and long term reliability.

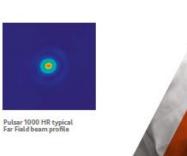
The system versatility is augmented by a large offer of instrumentation and options for user specific needs.

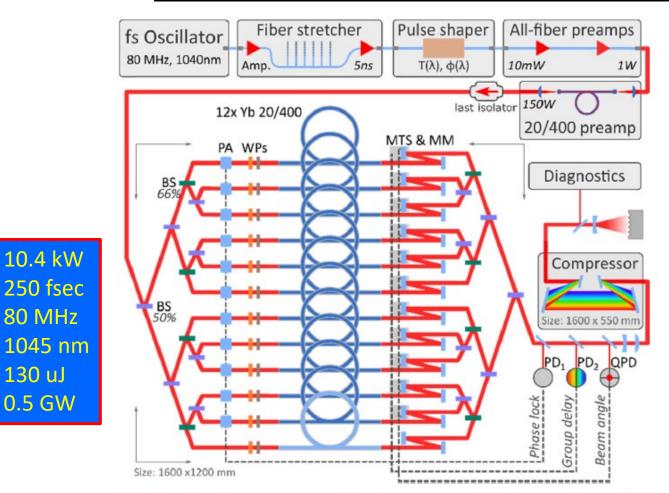

> Up to 25 J
 > Highest contrast ratio better than 10¹⁰ : 1
 > Up to 5 Hz repetition rate
 > Ultra-short sub-20 fs pulses
 > Advanced Monitoring System




Commercially Available State of the Art

Specifications	Pulsar 500	Pulsar 500 HR	Pulsar 1000	Pulsar 1000 HR					
Repetition Rate (Hz)	1 shot / mn 0,1	1 to 5	1 shot / mn 0,1	1	System dimensions				
Peak Power (PW) ¹	>	0,5		•1	Pulsar 500 Pulsar 500 HR	32 m ² 344 ft ²			
Energy Per Pulse (J)	> 12,5		>	25	Pulsar 1000 Pulsar 1000	38 m ² 410 ft ²			
Central Wavelength (nm)		80	0 ± 10		Others				
Pulse Width (fs FWHM) ²			< 25		Max Total Electrical Power ⁵	20 to 40 kW			
Pulse To Pulse Energy Stability (% RMS)			: 1.0		Max Water Cooling Capacity ⁵	12 to 20 kW			
					Laboratory Temperature Range	18 - 23 °C			
Nanosecond Contrast	> 10 ⁸ : 1				Laboratory Temperature Stability +/- 1 °C				
	> 10 ³ :1 beyond 1 ps				¹ Calculated at 25 fs pulsewidth				
Picosecond Contrast		> 10º :11	 ² Sub- 20 fs Ultra short pulse option available ³ With Deformable mirror (in Option) ⁴ Under stable controlled environment ⁵ Depends on model 						
		> 10 ^s :1 b							
ASE Contrast		> 10 ¹⁰ :1 b	eyond 100 ps						
Strehl Ratio ³		>	0.85						
Pointing Stability (µrad RMS) ⁴			< 5						

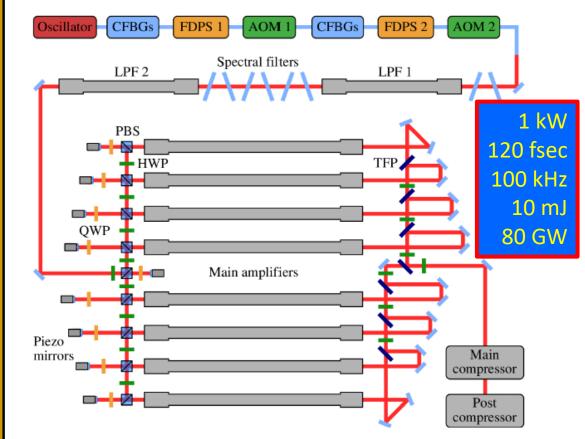




HD contrast measurement

USPL High Average Power - State of the Art

10.4 kW


250 fsec

80 MHz

130 uJ

0.5 GW

Fig. 1. Schematic setup of the laser system. BS, beam splitter; WP, quarter-/half-wave plate; MTS, motorized translation stage; MM, motorized mirror; (Q)PD, (quadrant) photodiode.

Schematic of the setup. For clarity, only the lower level of the Fig. 1. main amplifier stage is depicted. However, the upper level looks similar. CFBG, chirped fiber Bragg gratings; FDPS, Fourier-domain pulse shaper; AOM, acousto-optic modulator; LPF, large-pitch fiber; QWP, quarter-wave plate; HWP, half-wave plate; PBS, polarizing beam splitter; TFP, thin-film polarizer.

Limpert @ Abbe Center, Helmholtz, Fraunhofer, Jena

LaserNetUS

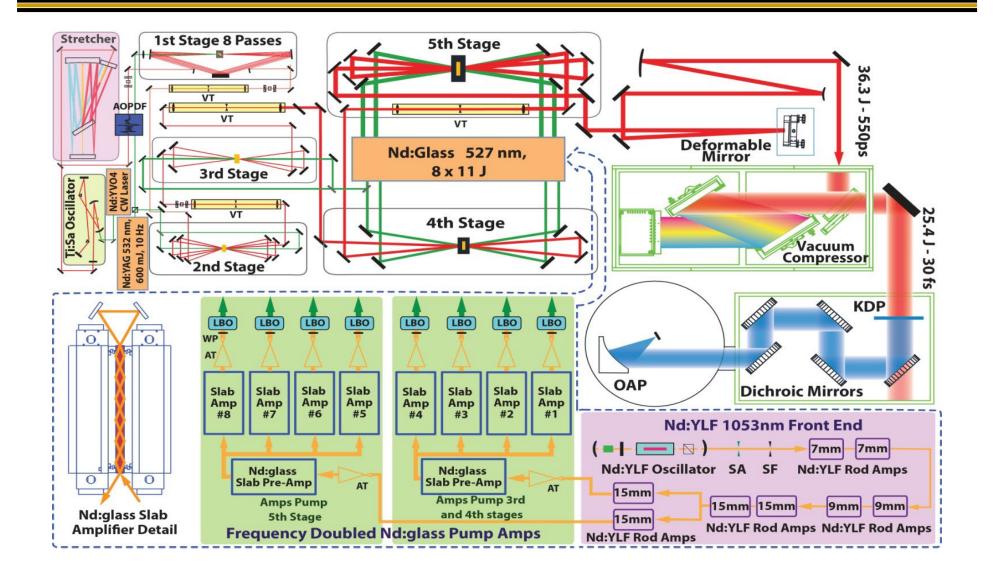
Creating a Brighter World, Together

Mission is to advance and promote intense ultrafast laser science and applications by:

Advancing the frontiers of laser-science research;
Providing students and scientists with broad access to unique facilities and enabling technologies;
Fostering collaboration among researchers and networks from around the world

LaserNetUS supports students

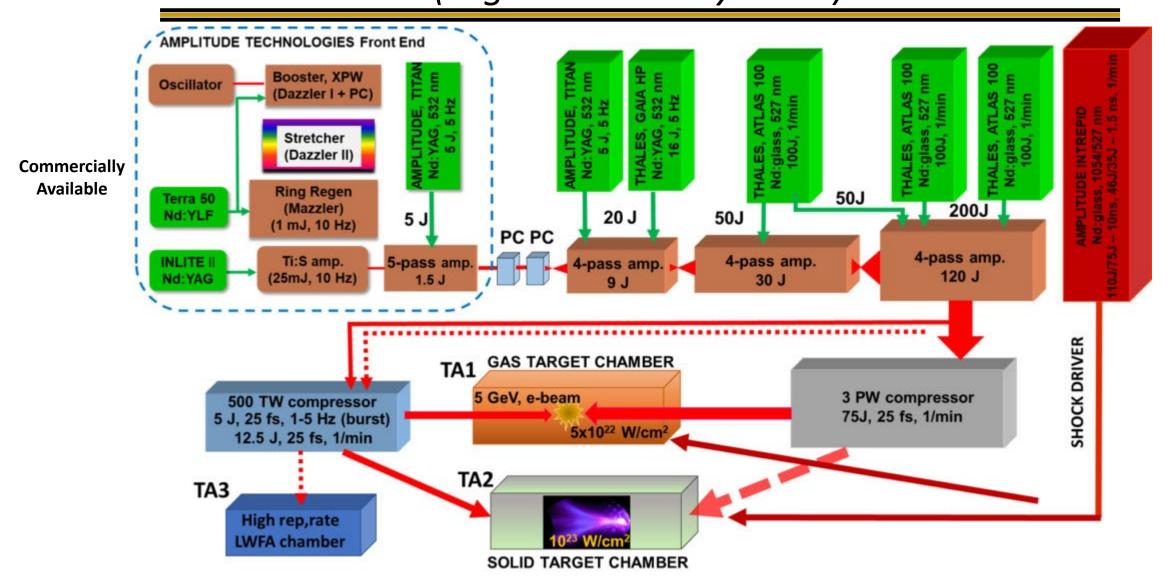
The network allows graduate and undergraduate students access to laser facilities. The experiments at these facilities provide data for students' Ph.D. theses and students' publications. In 2019 alone, 80 students, 36 postdocs, and 86 staff scientists from users groups participated in LaserNetUS experiments.


Member Institutions

Join the ecosystem as a: User Facility Member •Research Group Member •Single Investigator Member •Private Sector Partner

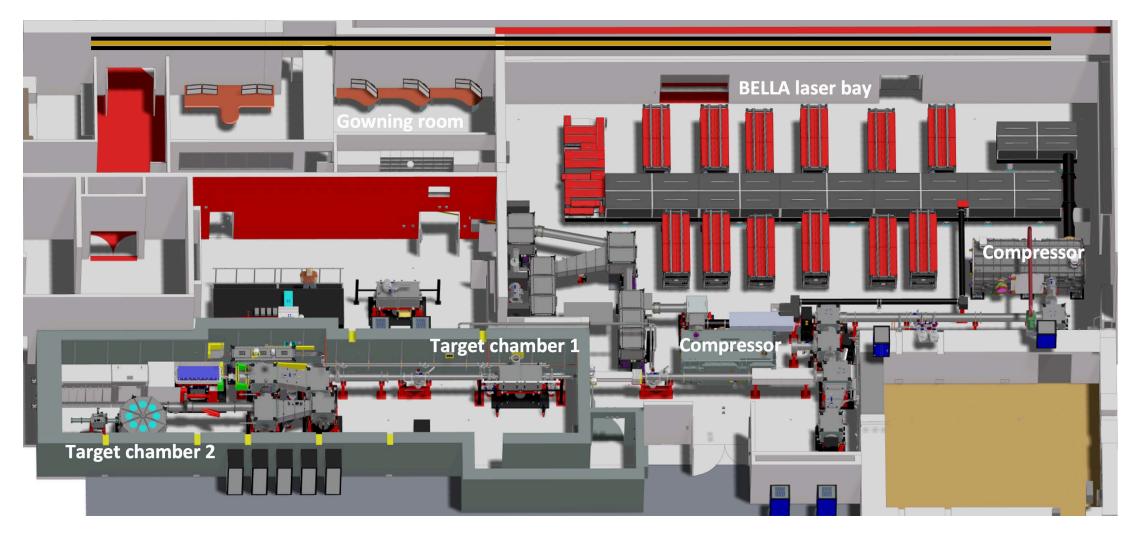
Colorado State University University of Michigan University of Nebraska-Lincoln Ohio State University University of Texas at Austin University of Rochester Institut National de la Recherche Scientifique University of Central Florida Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory SLAC National Accelerator Laboratory.

Colorado State University - Aleph


UCF

Colorado State University - Aleph

		AI	LEPH 400) nm			1				ALEPH 800	ALEPH 800 nm	ALEPH 800 nm
arameter	Value	Unit	Additional Inf	formation		1		Parameter	Parameter Value	Parameter Value Unit	Parameter Value Unit Additional Infor	Parameter Value Unit Additional Information	Parameter Value Unit Additional Information
Center Wavelength	400	nm			 	_	_	Center Wavelength					
Pulse duration (I FWHM)	45	fs						Pulse duration (I FWHM)	Pulse duration (I FWHM) 30				
Max energy on target	10	J					_	Max energy on target					
Shot energy stability	10	%	r.m.s.					Shot energy stability					
Focal spot at target								Focal spot at target	Focal spot at	Focal spot at	Focal spot at	Focal spot at	Focal spot at
F/number	f/2							F/number					
intensity FWHM	1.2	μm						intensity FWHM	intensity FWHM 2.4	intensity FWHM 2.4 µm	intensity FWHM 2.4 µm	intensity FWHM 2.4 µm	intensity FWHM 2.4 µm
Strehl ratio								Strehl ratio	Strehl ratio	Strehl ratio	Strehl ratio	Strehl ratio	Strehl ratio
Energy containment	65	%	within	1/e	radius			Energy containment					
F/number	f/25							F/number	F/number f/25	F/number f/25	F/number f/25	F/number f/25	F/number f/25 f/25
focal spot FWHM	20	μm						focal spot FWHM					
Strehl ratio								Strehl ratio	Strehl ratio	Strehl ratio	Strehl ratio	Strehl ratio	Strehl ratio
containment	70	%	within					Energy containment					
Pointing Stability	2	μrad						Pointing Stability	Pointing 2	Pointing 2 urad	Pointing 2 urad	Pointing 2 urad	Pointing 2 urad
Pre-pulse contrast					 		_	Pre-pulse	Pre-pulse	Pre-pulse	Pre-pulse	Pre-pulse	Pre-pulse
ps scale	10-12		@ >25 ps					contrast					
Repetition Rate	3.3					Ĩ	1	ps scale		•			
								Repetition Rate	Repetition Rate 3.3	Repetition Rate 3.3 Hz	Repetition Rate 3.3 Hz	Repetition Rate 3.3 Hz burst mode	Repetition Rate 3.3 Hz burst mode

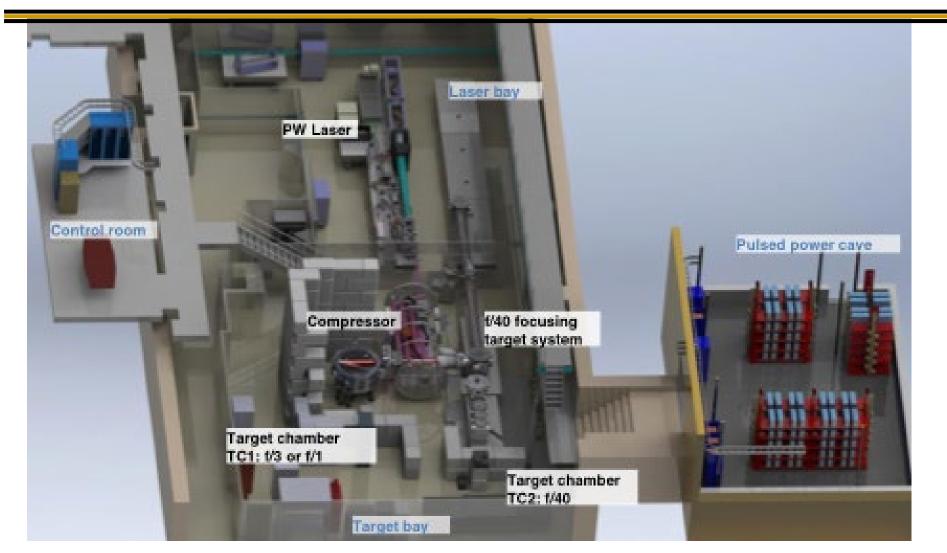


University of Michigan – Zeus (Highest intensity in US)

UCF

BELLA @ LBNL

BELLA @ LBNL


1 PW Laser

Parameter	Value	Unit	Additional Information			
Center Wavelength	815	nm				
Pulse duration (FWHM)	30	fs				
Max energy on target	40	J				
Shot energy stability	2.5	%	r.m.s.			
Focal spot at target						
F/number	65					
intensity FWHM	65	μm				
Strehl ratio	>0.9					
Energy containment	75	%	within	67	μm	radius
F/number	f/2.5					
focal spot FWHM	2.7	μm				
Strehl ratio	0.7					
Energy containment	70	%	within	3	μm	radius
Pointing Stability	1.3	μrad	r.m.s.			
Pre-pulse contrast						
ns scale	10 ⁻⁹		@	1	ns	
ps scale	10-6		@	5	ps	
Repetition Rate	1 Hz					

	Hundred TW	Laser		
Parameter	Primary beam	Secondary beam	Unit	Additional Information
Center Wavelength	800	800	nm	
Pulse duration (FWHM)	40	40 or 300,000	fs	
Max energy on target	>2	>0.5	J	
Shot energy stability	1.5	2.5	%	r.m.s.
Repetition rate	1 or 5	1 or 5	Hz	
Focal spot at target				
F/number	f/20	f/20		
Intensity FWHM	20	20	μm	
Strehl ratio	>0.8	>0.8		
Energy containment	80	80	%	
Pointing Stability	5	5	μm	r.m.s.
Pre-pulse contrast				
ns scale	10 ^{.7} (ns pedestal)	10-7 (ns pedestal) <10 ⁻⁵ (pre-pulse at ~10 ns from the front-end)		Ask facility for up to date information.
ps scale	10-6	10-6		

Texas Peta-Watt @ UTA

Summary

- Introduction What's State of the Art?
 - High Power Ultrafast Lasers for Accelerators
 - Typical Techniques
 - Pulse Generation via Mode-locking
 - Stabilization for Single Cycle Generation
 - Amplification Techniques
 - Chirped Pulse Amplification
 - Regenerative or Optical Parametric Amplification
 - High Average Power Systems
- National Facilities LaserNetUS
- Summary → High Peak Intensity Laser are Ubiquitous

