

Development of tracking detector with capability of precise time and spatial resolution for future collider experiments

Koji Nakamura	(KEK)
---------------	-------

BNL Physics Seminar

March 13th, 2023

What we want to know?

Origin of Universe

- Standard Model for Particle Physics

- Observation of Higgs Boson indicate "What we expect" was right.
- But at the same time we cannot describe everything only by "What we expect"
 - What is **Dark Matter** and **Dark Energy**?
 - Why matter > anti-matter?
 - Neutrino Mass?
 - Hierarchy Problem
 - Quantization of Gravity etc

Huge progress in this 15years. → Very interesting phase to prepare new exp.

These must be hints of new physics?

 $\begin{aligned} \chi &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{D} \mathcal{Y} + h.c. \\ &+ \mathcal{Y}_i \mathcal{Y}_{ij} \mathcal{Y}_j \mathcal{P} + h.c. \\ &+ |D_{\mu} \mathcal{P}|^2 - V(\mathcal{P}) \end{aligned}$

Why accelerator experiment?

- Non-Accelerator Experiment
 - Cosmic Microwave Background (CMB)
 - **COBE and WMAP** measured temperature uniformity of CMB. These measurement indicate existence of **Dark Matter/Energy** as well as age of the universe.
 - Search for WIMP Dark Matter
 - XENON1T, LUX etc.. Under ground experiment
 - Fermi-LAT, AMS-02 etc... Experiment at Satellite or International Space Station.
 - Accelerator Experiment
 - To measure observed phenomena precisely, we need to precisely control the production of phenomena.
 - Once we succeed the production, we can measure the phenomena very precisely.
 - But we need to create huge energy/mass phenomena (10s GeV to a few TeV)
 - \rightarrow Need huge accelerator

History of the collider experiment

• Before 1980s

- e+ e- collider : Observation of low mass particles (~ a few GeV)
 - 1974 J/ψ
 - 1975 τ
 - 1979 gluon
- After 1980s
 - **Proton collider :** Observation of heavier mass particles.
 - 1983 W,Z
 - 1995 top
 - 2012 Higgs
 - e+ e- collider : Precision measurement
 - 1989 : neutrino : 3 generation
 - LEP Electroweak measurement

Complementarity :

SppS : W/Z observation →LEP : mesurement

LEP : top mass expectation? → Tevatron : Top observation

LEP : EW measurement + Tevatron : Top mass measurement → LHC : Higgs observation

History of the collider experiment

• Before 1980s

- e+ e- collider : Observation of low mass particles (~ a few GeV)
 - 1974 J/ψ
 - 1975 τ
 - 1979 gluon
- After 1980s
 - **Proton collider :** Observation of heavier mass particles.
 - 1983 W,Z
 - 1995 top
 - 2012 Higgs
 - e+ e- collider : Precision measurement
 - 1989 : neutrino : 3 generation
 - LEP Electroweak measurement

Complementarity :

SppS : W/Z observation →LEP : measurement

LEP : top mass expectation? → Tevatron : Top observation

LEP : EW measurement + Tevatron : Top mass measurement \rightarrow **LHC : Higgs observation**

Difficulty of Hadron Collider

[Difficulty of pp collider analysis]

- Difference of center-of-mass energy and energy used for collisions.
 - Parton Distribution Function (PDF)
- Complicated collision due to composite particle of proton
 - Huge QCD background
 - Spectator of the proton collisions
 →Underlying event
 - Multiple collisions in a bunch crossing →Pile-up
 - 10 order of magnitude difference between pp cross section and interesting events.

Challenge of the tracking detector

- Multiple interaction in an event at
 HL-LHC : 140-200 collision in an event,
 Future collider: 1500 !
- ♦ How to solve this issue?
 - *I. <u>Improve granularity</u>*: Currently developing 50um pitch pixel detector and not possible to make smaller...
 - 2. <u>*Timing information*</u>: Completely new information for tracking : possibility of dramatical improvement of track reconstruction \rightarrow Should help if timing resolution achieved 1cm/ $c \sim 30ps$

Improvement of granularity

Impact for tracker with time resolution

- Collider experiment gets high energy and high intensity. →Future Tracking detector should have timing information for all hits!
- Tentative Requirement

 - (hadron collider) ~ $o(10^{16})n_{eq}/cm^2$ radiation tolerance

đ

BNL Physics Seminar

How to improve the timing resolution?

Timing resolution:

 $\sigma_t^2 = \sigma_{tw}^2 + \sigma_j^2$ $\sigma_{tw}: \text{Time walk}$ $\sigma_j: \text{ Jitter (electronics)}$

$$\sigma_j = \frac{\sigma_n}{\left|\frac{dV}{dt}\right|} = \frac{\sigma_n}{\left|\frac{S}{t_r}\right|} = \frac{t_r}{\left|\frac{S}{\sigma_n}\right|}$$

S : pulse height σ_n : Noise t_r : rise time

Time walk :

can be reduced by using Constant Fraction Threshold <u>Jitter (electronics)</u>:

can be reduced faster rise time or larger signal

Faster signal turn on and good S/N ratio should be the key to improve timing resolution

Low Gain Avalanche Diode (LGAD)

 \Leftrightarrow General *n*⁺-in-*p* type sensor with *p*⁺ gain layer under *n*⁺ implant to make very high Electric Field at the surface.

 \rightarrow Good timing resolution.

♦ 30ps timing resolution achieved already in 2015.

Signal drivers : Gain Holes

Charge Collection Noise (Landau Noise)

- For Minimum Ionization Particle (MIP), charge deposition is not uniform depth profile.
 - ♦ This effect makes timing resolution get worse.
 - * The slower turn on for charge at deep region. (the thinner sensor the better)
 - * Signal increase by depth but saturated at some point (25um in simulation)

$$I_{ind} = \sum_{i} \mathbf{q}_{i} \vec{v}_{drift,i} \cdot \vec{E}_{w,i}$$

50um

Thinner active thickness will help to reduce the effect

Timing resolution of LGAD sensor full picture

$$\sigma_t^2 = \sigma_{tw}^2 + \sigma_j^2 + \sigma_L^2$$

 σ_{tw} :Time walk

σ_i : Jitter (electronics)

σ_L : Landau noise

50um thick sensor : saturated timing resolution ~30ps Thinner sensor should have better resolution.

S : pulse height σ_n : Noise t_r : rise time

Spatial resolution of LGAD

♦ Segmented LGAD :

- ♦ To have spatial resolution, strip sensors has been processed.
- ♦ Need Junction termination extension(JTE) and p-stop structure to have individual gain layer →Low fill factor (20% for 80um strip)

Spatial resolution of LGAD

♦ Segmented LGAD :

- ♦ To have spatial resolution, strip sensors has been processed.
- ♦ Need Junction termination extension(JTE) and p-stop structure to have individual gain layer →Low fill factor (20% for 80um strip)
- Uniform gain layer with AC-Coupled electrode. (AC-LGAD)
 - ♦ In principle, 100% fill factor.
 - ♦ Signal shared on neighboring electrodes.
 - \Leftrightarrow Need optimization of n+ resistivity

AC-LGAD collaboration

AC-LGAD sensors

• Read out principle of AC-LGAD

Charge split : Impedance ratio

Assuming Z_{Cbulk},Z_{cint}>>Z_{Ccp}...

$$Q = \frac{Z_{R_{imp}}}{Z_{R_{imp}} + Z_{C_{cp}}} Q_0$$

 \Leftrightarrow Amount of produced charge:Q₀

♀ ◇ Readout Charge :Q

• Additional cross talk is expected due to the inter electrode capacitance C_{int}

- Amount of cross talk may also depend on input capacitance on the electronics.
- Effect must be understood \rightarrow Sensor with smaller Cint should be important

Optimization of process parameters

- Parameter space in n+ and p+ doping concentration has been optimized.
 - n+ concentration should be lower than Normal (DC) LGAD to reduce charge sharing (Crosstalk).
 - p+ doping concentration is used to tune operational voltage (i.e. avalanche voltage)

p+ doping concentration

Parameter space for doping concentration

March 13th. 2023

17

BNL Physics Seminar

Optimization of process parameters

JFY2015-JFY2018 DC-LGAD

- ♦ We contributed only first prototype. HGTD took over.
- JFY2019, JFY2020 AC-LGAD production \otimes
 - Vary n + and p + dope (A-E, 1-3) \diamond
 - Vary thickness of SiO₂ (capacitance : $C_{\rm b} = 1.5 {\rm x}C_{\rm a}$)
- Electrode type \otimes
 - ♦ Pad type: 500um sq. 4pad/sensor
 - \Diamond
 - \diamond Pixel type : 50um sq. 14x14 electrode

G-PIX42

Parameter space for doping concentration

BNL Physics Seminar

Signal size and crosstalk

- ♦ Strip type : Signal size and Crosstalk
 - n+ resistivity dependence of signal size and crosstalk. \diamond
 - \diamond

All C to E types works fine. \rightarrow Can choose depends on application

Two approaches to have good spatial resolution

♦ Fine pitch electrode approach

- ✤ For High occupancy experiment like hadron collider.
- ♦ Reduce crosstalk (charge sharing)
 - ♦ High n+ implant resistivity
- Pros. : smaller occupancy and smaller data size like digital readout
- ♦ Cons. : Limitation of spatial resolution by electrode size. # of channels get huge...

Fine pitch strip with narrow A1 (to reduce inter strip cap.)

- <u>Charge sharing approach</u>
 - For lepton collider or other low occupancy colliders.
 - Reconstruct particle position using charge sharing (charge fraction to next channels)
 - Relatively low n+ implant resistivity
 - Pros. : Very good spatial resolution if high resolution ADC used.
 - Cons. : Smaller signal size. Need high resolution ADC.

HPK pad and BNL sensor approach

How small electrode could we achieve?

Used thinner di-electric layer (Oxide layer) → Electrode capacitance increased by factor o

Pixel sensor

5 times larger Ccp compared with E-b (2020) type : E-600

50um pitch electrode sensor has not been yet tested due to difficulty of wire bonding.

How small electrode could we achieve?

<u>c</u> 1600

م س 400 ک

E120

C120

- Compared signal size of 6 types C_{cp}/R_{imp} . \bullet
 - 150um pixel sensors
 - Two n+ resistivity types and 3 Ccp types
- Compared signal size of 3 pixel size \bullet
 - 100/150/200um pitches are compared.

22

E240

C240

E600

C600

Is Strip type electrode possible?

✤ For collider experiments, outer layers should use Strip type electrode to reduce readout channels.

Successfully developed Good S/N 80um pitch strip detector!

Is Strip type electrode possible?

✤ For collider experiments, outer layers should use Strip type electrode to reduce readout channels.

Successfully developed Good S/N 80um pitch strip detector!

However, the signal size is much smaller than pixel sensors

Why so small signal?

How much effect of interstrip capacitance?

Significantly smaller signal compared with pad type detector. **How much signal attenuation in the strip?**

This might affect to the signal size un-uniformity and delay of signal readout.

Inter strip capacitance (Cint) effect

Strip sensor with cut line

Strip sensor which has different electrode

Cutline

length (to study inter electrode cap.)

Where signal disappeared?

Inter strip capacitance (Cint) effect

Position reconstruction by fine pitch approach

- HPK 80um pitch strip sensor with highest implant resistivity (E-b type)
 - \diamond Position resolution : 23um(80um/ $\sqrt{12}$) is expected in case of binary readout 20GeV
- Testbeam @ Tohoku University (ELPH) •

4 layer of Telescope (25um x 500um pixel) Trigger by scintilator Specify region (ROI)

Amplitude distribution with residual

Position reconstruction using charge sharing

♦ Fermilab group is measuring our sample at Fermilab TestBeam Facility (FTBF) : 120GeV proton beam

♦ Permanent setup in FTBF

- ♦ Movable : slide in and out of beamline as needed, parasitic use of beam
- ♦ Environmental controls : sensor temperature (-25°C to 20°C), and humidity, monitoring
- ♦ Time reference with ~10ps resolution (Photeck PMT240 : MCP)
- ♦ DAQ : high bandwidth, high ADC resolution 8-channel scope (LeCroy WR8208)

Tested : 2x2 pad (500um x 500um electrode size) Three different thickness : 50um, 30um and 20um

Position reconstruction using charge sharing

- - ♦ Fermilab testbeam at Feb 2021, HPK ACLGAD (Pad type)
 - ♦ 500um□ pad sensor with C-2 type instead of best type E-b
 - ♦ Timing resolution 37ps
 - Position resolution in middle 500um area : 15um resolution including tracker resolution.

doping concentration

Parameter space for doping concentration

A-3

A-2

29

DC LGAD

B-3

B-2

B-1

arger Ignal & Smaller cross talk

n+ doping concentration

∠V fð V gain

Early break

Measurement of timing resolution

- ♦ Measurement of timing resolution for fine electrode sensors are challenging.
 - ♦ Taking time if we use two layer coincidence

Photek PMT 240 (90Sr source)

~9ps timing resolution

Timing resolution $\sigma_t^2 = \sigma_{tw}^2 + \sigma_j^2 + \sigma_L^2$ σ_{tw} :Time walk σ_j : Jitter (electronics) MIP IR σ_L : Landau noise MIP

- Photek PMT240 (MCP-PMT)
 - Mes. Of timing resolution to MIP
 - 9ps PMT240 resolution (reference)
 - Don't know injecting position.
- Infra-red (pico sec) laser
 - Known injecting position(Size:1.8um)
 - 5ps jitter
 - No landau noise

Timing resolution results

Timing resolution measurement at testbeam

- ♦ Results for 2x2 pad sensors with 50um, 30um and 20um thickness
 - ♦ Signal size (amplitude) is smaller in thinner sensors.
 - \diamond 20um thick sensor has the best timing resolution : ~20ps
 - ♦ Uniform timing resolution at the gap region as well.

Radiation tolerance of LGAD detector

- Like normal silicon device
 - ♦ Bulk damage (NIEL) : Si lattice damage
 - \diamond Surface damage (TID) : charge up at SiO₂-Si
- ♦ In addition "Acceptor Removal"
 - \Leftrightarrow *p*+ in Gain layer reduced

Radiation damage study by FBK sensors

Depends on : p+ concentration, type of dopant and diffusion of p+

Why is the acceptor removal issue?

- ♦ Reducing active shallow dopant increase Avalanche voltage.
 - ♦ Confirmed by non-irrad samples with different p+ concentration.
 - ♦ Operational voltage increase and get over voltage limit of device.
 - \diamond Current limit is 1-2 x 10¹⁵neq/cm²

Drastic improvement is necessary to use in Future hadron colliders.

New idea for improvement?

♦ The issue is :

- ♦ electrically active shallow acceptors are transformed into defect complexes that are no longer having the properties of those shallow dopants.
- ♦ New idea
 - ♦ Carbon annealing (not possible by HPK)
 - ♦ Improvement is just a factor of 2 or so...
 - Compensation method
 - ♦ Add Boron + Phosphorus
 - ♦ If acceptor removal is smaller than donner removal this method should work!

♦ In-active Boron?

♦ 10 times Bi at the beginning to clean up Oi

Compensation method

- Both Boron(p+) and Phosphorus(n+) are doped.
 - \diamond Operating with effective p+ (difference of p+ and n+)
 - Due to the mass difference of Boron and Phosphorus, depth profile of p+ and n+ are slightly different. (effective dope is not simple Gaussian like depth profile)
 - ♦ But we could successfully produced working LGAD sensors with a few types of compensation parameters.

Irradiation has been performed first compensation prototype (DC-LGAD) in January 2023 and measured quickly \rightarrow we can show first results today!

Radiation tolerance results of Compensation LGAD

- Three different conditions are compared
 - ♦ Boron and Phosphorus doping
 - ♦ 2.5B+1.5P
 - ♦ 1.5B+0.55P
 - ♦ 1B (reference)
 - ♦ 3 different fluence points (non-irrad, 6e14, 3e15 neq/cm²)
- ♦ Result shows not very promising
 - ♦ Expected quite big jump of Vbd to either higher or lower.
 - \diamond What does this mean?

BNL Physics Seminar

Removal of Dopant

 \diamond Active dopant will reduce by exponential function by fluence (Φ)

 $N_A(\emptyset) = N_A(0) \cdot e^{-C_A \emptyset}$ $N_D(\emptyset) = N_D(0) \cdot e^{-C_D \emptyset}$

Any idea of CA and CD from past measurement?

CD=2.4 x 10⁻¹³ cm² for phosphorus and CA=2.0 x 10⁻¹³ cm² for boron in very high resistivity p-type and n-type materials (>1kΩcm).
→ How about lower resistivity ? (like 1 x 10¹⁶ cm⁻³ p+ concentration)

Compensated effective p+ gain layer will change by following formula

$$N_A(\emptyset) - N_D(\emptyset) = N_A(0) \cdot e^{-C_A \emptyset} - N_D(0) \cdot e^{-C_D \emptyset}$$

Donor removal

March 13th, 2023

BNL Physics Seminar

Partially-activated Boron(PAB) in gain layer

- Oped larger Boron but baked with lower temperature not to activate all Boron. (i.e. lots of Bi with some Bs)
- ♦ Probably Oi is cleaned up by Bi+Oi->BiOi process.
- First prototype shows very low Vbd before irradiation.
 (i.e. too much active Bs)
- Vbd after 3e15neq/cm2 fluence is ~400-500.
 Much lower Vbd than normal sample (>>700V)
- ♦ Will tune the Vbd before irradiation to make the sample works before irradiation. →Next prototype.

This method is promising to study further.

Substitution $Substitution acceptor B_{s}$ $B_{i} + O_{i} \rightarrow B_{i}O_{i}$ $B_{v} - Valence Band$ Interstitial Boron $B_{i} + O_{i} \rightarrow B_{i}O_{i}$ $B_{v} - Valence Band$

Conclusion

First high spatial resolution LGAD! 2019,20 sample ACLGAD with 80um pitch strip sensor Good S/N ratio : 99.98% at 1e-4 noise rate

Small signal due to : inter strip capacitance

First pixelated LGAD! ACLGAD with 100um x 100um pixel sensor Larger signal than strip sensor!!

Much better solution !

20um thick ACLGAD successfully developped We achived ~20ps level time resolution! Home work LGAD detector with Radiation tolerance Compensation method may not work Partially activated Boron is promissing

2021 sample

Future

- ♦ Improvement of radiation tolerance (con't)
 - ♦ Tune Partially Activated Boron samples.
 - ♦ Apply PAB to AC-LGAD
- ♦ Large size prototype
 - ♦ Gain uniformity is important for larger sensor.
 - ♦ Producing KEK R&D and EIC prototype masks
 - ♦ Will receive samples by the end of this month!
- ♦ ASIC development
 - ♦ Need high speed ASIC with "not-too-high power consumption"
 - ♦ Hope it's less than 0.5W/cm² power consumption
 - ♦ Collaborating with Si-Ge ASIC (Uni. Geneva)
 - ♦ ATLAS/CMS/EIC will produce their own ASIC for the colliders.
- ♦ Will builds modules for future collider experiments

<u>Large size prototype</u> <u>Gain Uniformity</u>

EIC prototype 3cm length 500um pitch strip

HGTD prototype 2cm x 2cm 100um pitch pixel

New Application to Collider detector

BNL Physics Seminar

March 13th, 2023