

AE-95 Report: Optical diagnosis of Self-Modulated CO2-laser driven plasma wakes

UCLA

<u>*R. Zgadzaj*</u>, Yuxuan Cao, James R Welch, **M. C. Downer** - University of Texas at Austin

I. Petrushina, A. Jain, A. Gaikwad, A. Cheng, L. D. Pinto de Almeida Amorim, M. Flament, P. Iapozzuto, Y. Jing, J. Yan, S. Kongtawong, P. Kumar, **R. Samulyak**, **N. Vafaei-Najafabadi**, <u>V. Litvinenko</u> - *Stony Brook University*

C. Zhang, W.B. Mori, C. Joshi -University of California Los Angeles

M. Babzien, M. Fedurin, P. Kaur, R. Kupfer, K.Kusche, M. Polyanskiy, C. Swinson, I. Pogorelsky, M. Palmer - *Brookhaven National Lab, Accelerator Test Facility*

This work is supported by U. S. DoE grants: DE-SC0014043, DE-SC0011617, and DE-SC0012704.

Vision: Quasi-mono-energetic LWFAs based on large, controlled mid-IR laser-driven bubbles

AT AU injection with $\Delta E/E \sim 0.1\%$ from external linac or µm-focused ionizing laser

Precise and controllable *injection* from ATF Linac (or laser ionization AE88) Detailed *optical visualization* of plasma wave density structure AE95 Detailed *radiographic visualization* of plasma wave E-field AE93

ATF Users' Meeting 2023 02 28

nC charge: high luminosity at IP.
staging: easier with large LWFAs..

• high spin-polarization: detection of

parity-violating interactions, nuclear spin

THE UNIVERSITY OF

ATF Users' Meeting 2023 02 28

SPACE* simulations predict self-injection threshold at $P \approx 1$ TW for f /# = 2 and $n_e = 5 \times 10^{17}$ cm⁻³

[1] K. Yu, R. Samulyak, "SPACE code for beam-plasma interactions," *Proc. IPAC*, 728 (2015)

Copious injection

First Demonstration of SM-LWFA in the mid-IR with upgraded CO₂ laser 2ps, up to 5J

Measured charge dependence on laser energy, plasma density, and focus position

ATF Users' Meeting 2023 02 28

Average spectral brightness [pC/MeV]

Newest configuration of the experiment.

Electron spectrometer and beam profile cameras behind the chamber

20 mm slit

67.5844

60.075 52.5656

45.0562 37.5469 30.0375 22.5281 15.0187 7.50937 0

Raw result samples from second run

¹ K. Yu and R. Samulyak, "SPACE code for beam-plasma interaction," in 6th IPAC (2015), pp. 728-730.

ATF Users' Meeting 2023 02 28

2

 $n_e = 7.5 \times 10^{17} cm^{-3}$

15

¹ Simulation: Prabhat Kumar *SPACE code*

Energy, [MeV]

10

1

3

Under some combinations of laser energy, hydrogen density, and nozzle position relative to the laser focus, the core of the electron beams becomes less divergent and more intense:

Future Plans

- 1)
- 1) Copious electron self-injection and acceleration has been demonstrated from a SM-LWFA driven by ATF's 2ps, 5TW, single pulse CO_2 laser.
- 2) Electron beamlets with divergence as low as ~10mRad have been observed.
- 3) Electron energies up to 10 MeV and sometimes higher have been observed.
- 4) Although most spectra are continuous with an exponentially decaying tail at high energies, a number of cases were recorded with a narrow bandwidth peak at the high end of the spectrum, leading to the conclusion that a strongly nonlinear regime is being reached.
- 5) Very low injection thresholds have been observed. The smallest accelerated charge was observed at about 10¹⁶cm⁻³, driven by a 5TW pulse.

- Resume optical probe studies (AE95) after switching to the new Ti:Sapp generated 800nm probe beams, and subsequently to larger wavelengths (Thomson scattering, transverse shadowgraphy, frequency domain interferometry/holography). Short pulse 800nm probe will increase temporal resolution. Moving toward longer wavelengths allows stretching optical probing sensitivity toward lower plasma densities.
- 2) Continued study of electron spectra, profiles, charge, together with optical plasma probe and radiographic field measurement (AE93)
- 3) Faraday rotation measurement of magnetic fields associated with SM-LWFA. Additionally, this diagnostic is more sensitive at lower densities than interferometry and is sensitive to injected charge.
- 4) Ultimate goal is to transition to blowout regime characterization with, and without, external injection from the linac, or from optical ionization (AE88), when the CO_2 laser upgrades allow this.

Thank you!

Products

1. J. Welch, "Self-modulated laser wakefields driven by a CO₂ laser,"

Doctoral Dissertation, UT Austin, August 2019.

2. P. Kumar, et al., "Simulation study of CO2 laser-plasma interactions and self-modulated wakefield acceleration", Phys. Plasmas 26, 083106 (2019)

3. Kumar, P., et al., "Evolution of the self-injection process in long-wavelength infrared laser-driven wakefield accelerators," Phys. Plasmas 28, 013102 (2020).

4. R. Zgadzaj, "CO₂-laser-driven wakefield acceleration," presented at the 20th Advanced Accelerator Concepts Workshop, Hauppauge, NY, Nov. 6-11, 2022.

5. R.Zgadzaj, I. Petrushina, et al., "Terawatt CO2-laser-driven plasma acceleration of electrons," in preparation for Nat. Comm. 2023

6. R. Zgadzaj, "CO₂-laser-driven wakefield acceleration," invited presentation, Laser-Plasma Accelerator Workshop, Lagos, Portugal, March 6-10, 2023.

7. Y. Cao, "Emittance preservation of a CO₂-laser driven wakefield acceleration with external injection," presented at the 20th Advanced Accelerator Concepts Workshop, Hauppauge, NY, Nov. 6-11, 2022.

8. Y. Cao, et. al., "Emittance preservation of a CO2-laser driven wakefield acceleration with external injection," to be submitted for publication in Proceedings of the 20th Advanced Accelerator Concepts Workshop, 2022.

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	
Transverse size at IP (σ)	μm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	2	~5 TW operation is planned for FY21 (requires further in-vacuum transport upgrade). A 3-year development effort to achieve >10 TW and deliver to users is in progress.	0-5
	Pulse Mode		Single		Single
	Pulse Length	ps	2		2 or less
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available in FY20	5 and greater if available
	M ²		~2		~2
	Repetition Rate	Hz	0.05		0.05
	Polarization		Linear	Adjustable linear polarization along with circular polarization will become available in FY20	Adjustable Linear and Circular

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters should be achieved by mid-2020, while Stage II parameters are planned for late-2020.	800nm
FWHM Bandwidth	nm	20	13		13nm
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	75fs
Chirped FWHM Pulse Width	ps	≥50	≥50		50ps
Chirped Energy	mJ	10	200		10mJ
Compressed Energy	mJ	7	100		5mJ
Energy to Experiments	mJ	>4.9	>80		5mJ
Power to Experiments	GW	>98	>1067		

Nd:YAG Laser System	Units	Typical Values	Comments	Requested Values
Wavelength	nm	1064	Single pulse	
Energy	mJ	5		
Pulse Width	ps	14		
Wavelength	nm	532	Frequency doubled	532nm
Energy	mJ	0.5		0.5mJ
Pulse Width	ps	10		2-3ps

Special Equipment Requirements and Hazards

- Electron Beam
 - Please indicate any special equipment that you expect to need, including (but not limited to) the transverse deflecting cavity, shaped bunch using mask technique, plasma capillary discharge system, bolometer/interferometer setup etc.:
- CO₂ Laser
 - Please note any specialty laser configurations required here: polarization control
- Ti:Sapphire and Nd:YAG Lasers
 - Please note any specialty non-CO₂ laser configurations required here: Doubled Yag and Ti:Sapphire laser beams at LWFA chamber: Compressed Ti:Sapphire laser at LWFA chamber
- Hazards & Special Installation Requirements
 - Large installation (chamber, insertion device, etc.):N
 - Cryogens:N
 - Introducing new magnetic elements: Spectrometer magnet <1T
 - Introducing new materials into the beam path: N
 - Any other foreseeable beam line modifications: Compressor for electron beam

Experimental Time Request

CY2023 Time Request

Capability	Setup Hours	Running Hours
Electron Beam Only		0
Laser* Only (in FEL Room)		0
Laser* + Electron Beam	80	120

Time Estimate for Remaining Years of Experiment (including CY2023-25)

Capability	Setup Hours	Running Hours
Electron Beam Only	0	0
Laser* Only (in FEL Room)	0	0
Laser* + Electron Beam	240	720

* Laser = Near-IR or LWIR (CO_2) Laser