AE98 progress report (Probing electron Weibel instability in optical-field ionized plasmas)

Pls: Chaojie Zhang and Chan Joshi, UCLA

Collaborators:

- Yipeng Wu, Audrey Farrell, Mitchell Sinclair, Ken Marsh, Warren B. Mori (UCLA)
- Irina Petrushina, Navid Vafaei-Najafabadi (SBU/ATF)
- Rotem Kupfer, Karl Kusche, Mikhail Fedurin, Igor Pogorelsky, Mikhail Polyanskiy, Mark Palmer (ATF) Thank you!

Supported by NSF and DOE-NNSA, DOE-HEP (received)

The 25th annual ATF User Meeting, Mar 1st, 2023

Our experiment done in 2021 is published in **PNAS** and highlighted on the DOE website

	High Energy Physics
	The Mechanism Of Cosmic Magnetic Fields Explored in the Laboratory
	JANUARY 17, 2023
f	High Energy Physics » The Mechanism Of Cosmic Magnetic Fields Explored in the Laboratory
9	
in P	
	Contours of magnetic fields that emerge a result of self-organization of microscopic currents resulting from the Weibel
	instability in a carbon dioxide laser-produced plasma probed by an ultrashort relativistic electron beam. Image courtesy of Chaojie Zhang, University of California Los Angeles

Weibel instability is relevant in many lab. and astrophysical plasmas

- its unambiguous demonstration remains a challenge
 - Mediate collisionless shocks (possible accelerator for cosmic rays)
 - Generate bright gamma ray flashes (novel light sources)
 - Affect energy deposition in the fast ignition scenario (energy)

1, J. Meinecke et al., Nat. Phys. 2014; C. M. Huntington et al., Nat. Phys. 2015, etc. 2, A. Benedetti et al., Nat. Photonics 2018, etc. 3, M. Tabak et al., PoP 1994; A. Pukhov et al., PRL 1997; M. Honda et al., PRL 2000; M. Roth et al., PRL 2001, etc.

An important mechanism for self-magnetization of many laboratory and astrophysical plasmas

- Optical-field ionization by CO2 laser
- Tri-Maxwellian electron velocity distribution
- B fields are probed by e- bunches

C. Zhang et al, PNAS 50, 119 (2022)

First direct observation of 2D evolution of the Weibel B fields

C. Zhang et al, PNAS 50, 119 (2022)

High spatiotemporal resolution e- probing demonstrated

First measurement of the k-resolved growth rate

- The dominating k redirects from y to x;
- Eventually a quasi-single mode forms;
- C. Zhang et al, PNAS 50, 119 (2022)

- Time-resolved measurements of the k spectra allows us to calculate the k-resolved growth rate
- Measured growth rates agree with theory

Self-organization of OFI plasma by Weibel instability

• significant amount (~1%) of thermal energy was converted to magnetic energy

 supports the hypothesis that the Weibel instability may provide the seed for galactic dynamo to produce ~µG magnetic fields that exist in the cosmos

Summary of results

- Self-generated magnetic fields due to Weibel instability were measured
 - with unprecedented ps, μ m resolution
 - first k-resolved growth rate measurements
- conclusively demonstrated the thermal Weibel instability driven by anisotropic EVD • $\sim 1\%$ of the thermal energy was converted to magnetic energy
 - agrees with theoretical prediction
 - supports that Weibel instability may be able to provide a seed for the galactic dynamo

Edited by Neta Bahcall, Princeton University, Princeton, NJ; received July 10, 2022; accepted October 18, 2022

The origin of galactic magnetic fields

Streamlines

- $\sim \mu G$ magnetic fields detected by SOFIA
- Background
 - optical image taken by Hubble Space Telescope

What is the origin of these fields?

- Primordial (fG nG) + compression during structure formation (NOT our interest)
- Weak seeds by plasma mechanisms + dynamo amplification
 - Weibel instability (AE98)
 - Biermann battery

Biermann battery effect

- condition discovered by German astronomer Ludwig Biermann in 1950.
- A possible source for seeding the galactic dynamo to created the observed $\sim \mu G B$ fields

• Biermann battery: a process that can generate a weak seed magnetic field from zero initial

Plan: Simultaneous measurement of Biermann and Weibel fields

10

Quasi-relativistic CFI/Weibel instability

non-relativistic CFI or Weibel instability $E \leq 1 \text{ keV}$

CFI/Weibel in opticalfield ionized plasmas,

UCLA:

Zhang et al. Sci Advances (2019)

UCLA-ATF:

Zhang et al. PNAS (2022)

quasi-relativistic CFI $E \sim 0.1 - 1 \,\,{\rm MeV}$

UCLA-ATF:

CO2 interacting with near-critical-density plasmas

╋

e- and/or optical probing

e- energy increasing

relativistic CFI $E \sim 10 - 100 \text{ MeV}$ E = 10 GeV

ultra-relativistic CFI

Expt. done at ATF:

B. Allen el al, "Experimental Study of Current Filamentation Instability", PRL (2012)

E305 at Facet-II 10 GeV dense ebeam interacts with foils

11

Summary of products delivered from the work to date

Conference

- Invited talk at the 63rd APS-DPP meeting (2021)
- talk at the 64th APS-DPP meeting (2022)

• Two Papers

- *paper*, Physics of Plasmas 29, 062102 (2022), Editor's pick
- (50) e2211713119 (2022), Highlighted on the DOE website
- See the next a few slides for the beam parameter requirements

Electron Weibel instability induced magnetic fields in optical-field ionized plasmas, invited

Mapping the self-generated magnetic fields due to thermal Weibel instability, PNAS 119

Electron beam requirements

	T T •4			
Parameter	Units	Typical Values	Comments	Requested Va
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	50.5 MeV
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	<0.1 for best compression
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to	<1 ps
Transverse size at IP (S)	mm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	>1 mm (horizontal) >0.5 mm (vert
Normalized Emittance	mm	1 (at 0.3 nC)	Variable with bunch charge	<1 mm mrad
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	1.5 Hz
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	single bunch

CO₂ laser requirements

Configuration	Parameter	Units	Typical	Comments	Requested
CO₂ Regenerative Amplifier	Wavelength	mm	9.2	Wavelength determined by mixed isotope	9.2 µm
	Peak Power	GW	~3		3
	Pulse Mode		Single		single
	Pulse Length	ps	2		2
	Pulse Energy	mJ	6		6
	\mathbf{M}^2		~1.5		ΟΚ
	Repetition Rate	Hz	1.5	3 Hz also available if needed	ΟΚ
	Polarization		Linear	Circular polarization available at slightly	linear
CO ₂ CPA Beam	Wavelength	mm	9.2	Wavelength determined by mixed isotope	9.2 µm
Note that delivery of full power	Peak Power	TW	2	~5 TW operation is planned for FY21	2
	Pulse Mode		Single		single
	Pulse Length	ps	2		2
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will	<5
	M^2		~2		ΟΚ
	Repetition Rate	Hz	0.05		ΟΚ
	Polarization		Linear	Adjustable linear polarization along with circular polarization will become available in FY20	Linear

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	S Stage I Values	Stage II Values
Central Wavelength	nm	800	800
FWHM Bandwidth	nm	20) 13
Compressed FWHM Pulse Width	fs	<55	<75
Chirped FWHM Pulse Width	ps	3 50	3 50
Chirped Energy	mJ	>30	200
Compressed Energy	mJ	>14	100
Energy to Experiments	mJ	>10	>80
Power to Experiments	GW	>250	>1067
Nd:YAG Laser	Units	Typical	2021
Wavelength	nm	1064	1064
Energy	mJ	5	100
Pulse Width	ps	14	<20
Wavelength	nm	532	
Energy	mJ	0.5	
Pulse Width	ps	10	

Comments	Requested
Stage I parameters have been delivered, while Stage II	800 nm
	ΟΚ
Transport of compressed pulses will initially include a	ΟΚ
	ΟΚ
	Stage I OK
	Stage I OK
	<10 mJ
	ΟΚ
Comments	Requested
Single pulse	
Frequency doubled	

Special Equipment Requirements and Hazards

Electron beam

- same as AE99 except the location of the beam profile screen is different
- CO₂ laser
 - start with linear polarization (LP, p-polarized)
 - circular polarization is optional
- Ti:Sapphire laser
 - improved beam quality and pointing stability
- Hazards and special Installation Requirements
 - none

Experimental Time Request

CY2023 Time Request (3 weeks combined with AE99)

4 days setup, 11 days run

Capability	Setup Hours	Running Hours
Electron Beam Only	16	24
Laser* Only (in Laser Rooms)	currently unknown	currently unknown
Laser(s)* + Electron Beam	16	64

Time Estimate for Remaining Years of Experiment (6 weeks including FY2023)

Capability	Setup Hours	Running Hours
Electron Beam Only	<i>32</i>	48
Laser* Only (in FEL Room)		
Laser(s)* + Electron Beam	<i>32</i>	1 <i>28</i>

17

Experimental layout

