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Experimental goals

Main proposal objectives for AE100 

• Scaling of hole boring acceleration to higher 
intensities and shorter laser pulses 

• Polarisation control of laser to critical density 
plasma coupling 

• Direct observation of collisionless shocks 

• Fundamentals of collisionless shocks and related 
laser-plasma interaction

2.5TW Integrated Spectrum
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Experimental Overview (1)

Laser driven ion sources increasingly 
attractive due to high source energy 

and short bunch length 
For example, these sources are well 

suited for high dose rate radiobiology - 
e.g. FLASH

Why laser driven ion sources? Important characteristics of laser 
driven source for applications

• High energy 
• High flux 
• Different ion species  
• High repetition rate 
• Minimal debris

Gaseous targets are a great choice, if 
high energy, high flux ions can be 

produced…

Z. Taheri-Kadkhoda et al. 
Radiation Oncology 3 (2008)

Aymar et al. Frontiers in 
Physics 8, 567738 (2020)
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nc = γ
ϵ0me

e2 ⋅ 4π2c2

λ2

Critical density of a plasma scales 
favourably with wavelength

Experimental Overview (2)

• In order to generate large static electric 
fields from EM fields, typically require: 
• Laser to be stopped by the plasma 
• Electrons need to gain significant 

energy to generate space charge

a0 = eE0
mec

⋅ λ
2πc

Relativistic electron response 
scales favourably with laser 
wavelength 

Palmer+, Phys. Rev. Lett. 
106, 014801 (2011).The ATF’s long wavelength 

high power CO2 laser is ideal
Ettlinger+  
(in preparation)
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10.2 μm CO2 Laser
0.97±0.21 J 3.5 ps 
35 μm focal spot 

f/2.5 off-axis 
parabola

H2 Gas Jet
532nm Probe
8 ps

Two-time 
Interferometry

Magnetic Ion 
Spectrometer

mJ level laser pre-pulse 
to shape gas, optimising 
density profile - a “blast 
wave” - Tresca et al. 
PRL 115 (2015)

Experimental Overview (3)

800 nm ~75 fs 
Ti:S probe

Ion 
spectrometer

Two-time 
shadowgraph and 

interferometry

H2 gas 
 jet

Drive CO2 
laser

Off-axis 
parabolic 

mirror
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Summary of major results and preparations (1)

CO2 drive 

Old ND:YAG probe

New Ti:Sapph probe

2 ps

10 ps

100 fs

• Previously: 10 ps 
ND:YAG, results in 
significant image blur


• New in 2022: 
Implemented <100 fs 
Ti:Sapphire probe, 
allowing measurement 
of intrapulse dynamics

Previously: blur due to ionisation and plasma 
dynamics when temporal overlap between 

drive and probe

Now: clean images when overlapping drive 
and probe, allowing measurements of 

evolving overdense LPI

New femtosecond probe for measuring 
intrapulse dynamics

High repetition proton beam 
spatial profiler

Achieved in the 2 week 2022 beamtime:

Shot with no ions

Shot with ions
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Summary of major results and preparations (2)

Typical ion beam 
parameters

• Clear channeling of CO2 pulse observed, coinciding with ion generation 
• Extremely stable ion generation, albeit low energy
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Summary of major results and preparations (2)

Good agreement with 2D PIC - more 
simulations ongoing

• Clear channeling of CO2 pulse observed, coinciding with ion generation 
• Extremely stable ion generation, albeit low energy
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Experimental plans for next year

• In 2022, unable to generate hole-boring / shock acceleration 
• Blast wave from prepulse unsuitable for generating steep density gradient 
• Reason unclear - lower f-number due to down-collimation at plasma 

shutter? 
• For next run, we are developing different blast wave generation scheme, 

from e.g. secondary optical laser 
• Vary laser polarisation to optimise ion generation 
• Use newly implemented diagnostics for characterisation of shockwave 

acceleration
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Summary of products delivered from work to date
• Recent talks: 

• AAC 2022 (Igor Pogorelsky) 

• Papers in preparation: 

• Y-H. Chen et al. (NRL) - “Proton acceleration in an overdense hydrogen plasma by intense CO2 laser pulses with nonlinear propagation effects in the underdense 
preplasma“ - submitted to POP (2023) 

• O. Ettlinger et al. (ICL) - “Proton acceleration from a near-critical density plasma grating” - in preparation 

• O. Ettlinger et al. (ICL) - “Experimental demonstration of shock-driven proton acceleration scaling at near-critical densities” - in preparation 

• N. Dover et al. (ICL) - “ Observation of laser-generated fast electron Weibel filaments” - in preparation  

• Papers related to AE100 forerunner ATF experiments 

• S. Passaladis et al. - “Hydrodynamic computational modelling and simulations of collisional shock waves in gas jet targets“ HPLSE 8, e7 (2020) 

• N.P. Dover et al.- “Optical shaping of gas targets for laser-plasma ion sources “ JPP 82, 415820101 (2016) 

• O. Tresca et al.- “Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target” - PRL 115 (2015) 

• C.A.J. Palmer et al. - "Manipulation of laser-generated energetic proton spectra in near critical density plasma”, JPP 81 (2015) 

• C.A.J. Palmer et al. - “Monoenergetic Proton Beams Accelerated by a Radiation Pressure Driven Shock”, PRL 106 (2011) 

• Z. Najmudin et al.- “Observation of impurity free monoenergetic proton beams from the interaction of a CO(2) laser with a gaseous target”, POP 18 (2011) 9



CO2 Laser Requirements
Configura)on Parameter Units Typical	Values Comments Requested	Values

CO2	Regenera)ve	Amplifier	Beam Wavelength mm 9.2 Wavelength	determined	by	mixed	isotope	gain	media

Peak	Power GW ~3

Pulse	Mode --- Single

Pulse	Length ps 2

Pulse	Energy mJ 6

M2 --- ~1.5

RepeGGon	Rate Hz 1.5 3	Hz	also	available	if	needed

PolarizaGon --- Linear Circular	polariza<on	available	at	slightly	reduced	power

CO2	CPA	Beam Wavelength mm 9.2 Wavelength	determined	by	mixed	isotope	gain	media √
Note	that	delivery	of	full	power	pulses	to	the	
Experimental	Hall	is	presently	limited	to	Beamline	
#1	only.

Peak	Power TW 5 ~5	TW	opera<on	will	become	available	shortly	into	this	year’s	experimental	
run	period.		A	3-year	development	effort	to	achieve	>10	TW	and	deliver	to	
users	is	in	progress.

√	(5	TW)
Pulse	Mode --- Single √
Pulse	Length ps 2 √	(or	longer)
Pulse	Energy J ~5 Maximum	pulse	energies	of	>10	J	will	become	available	within	the	next	

year
√

M2 --- ~2 √
RepeGGon	Rate Hz 0.05 √
PolarizaGon Linear Adjustable	linear	polariza<on	along	with	circular	polariza<on	can	be	

provided	upon	request
LP	and	CP	required
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Other Experimental Laser Requirements

Ti:Sapphire	Laser	System Units
Stage	I	
Values

Stage	II	
Values Comments Requested	Values

Central	Wavelength nm 800 800 Stage	I	parameters	should	be	achieved	by	mid-2020,	while	Stage	II	
parameters	are	planned	for	late-2020.

√	

FWHM	Bandwidth nm 20 13 √
Compressed	FWHM	Pulse	
Width

fs <50 <75 Transport	of	compressed	pulses	will	initially	include	a	very	limited	
number	of	experimental	interaction	points.	

≤75

Chirped	FWHM	Pulse	Width ps ≥50 ≥50
Chirped	Energy mJ 10 200

Compressed	Energy mJ 7 ~20 20	mJ	is	presently	operational	with	work	underway	this	year	to	
achieve	our	100	mJ	goal

Energy	to	Experiments mJ >4.9 >80 20
Power	to	Experiments GW >98 >1067

Nd:YAG	Laser	System Units Typical	Values Comments Requested	Values
Wavelength nm 1064 Single	pulse (as	backup)
Energy mJ 5
Pulse	Width ps 14
Wavelength nm 532 Frequency	doubled
Energy mJ 0.5
Pulse	Width ps 10
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Special Equipment Requirements and Hazards

• Electron Beam N/A 

• CO2 Laser 
• Please note any specialty laser configurations required here: 

• Controllable pre-pulse required - or better understanding of parasitic pulses 

• Ti:Sapphire and Nd:YAG Lasers 
• Please note any specialty non-CO2 laser configurations required here: 

• Continue using Ti:sapphire for probing 

• Hazards & Special Installation Requirements  

• Possible new magnet for updated ion spectrometer 

• HV for time-of-flight ion diagnostic
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Experimental Time Request

Capability Setup	Hours Running	Hours

Electron	Beam	Only

Laser*	Only	(in	FEL	Room) 40 80

Laser*	+	Electron	Beam

CY2023	Time	Request

Capability Setup	Hours Running	Hours

Electron	Beam	Only

Laser*	Only	(in	FEL	Room) 120 240

Laser*	+	Electron	Beam

*	Laser	=	Near-IR	or	LWIR	(CO2)		Laser

Time	Estimate	for	the	3-year	Experiment	(including	CY2023-25)
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Summary - AE100

• So far, 2-week beam times in Feb 2020 and Oct 2022


• New Ti:S probing capability transformational for 
understanding LPI


• Exciting results on real-time imaging of channeling and ion 
acceleration in near-critical density plasma


• Next run would aim to:


• Address issue with reliable blast-wave generation for density 
scale length shaping


• Make direct measurements of hole-boring front


• Investigate LP/CP effects on ion acceleration 14


