

National Laser-Initiated Transmutation Laboratory University of Szeged

HUNGARIAN NATIONAL

Generation of fast neutrons with ions accelerated by a far-infrared laser # 312792

National Laser-Initiated Transmutation Laboratory University of Szeged

Karoly Osvay

BNL Users' Workshop

1st March, 2023

Motivation

National Laser-Initated Transmutation Laboratory

Deuteron acceleration with few cycle pulses effect of chirp Neutron generation

Proposed experimental series Scientific aims Activity plan

National Laser-Initiated Transmutation Laboratory University of Szeged

Nuclear Waste Management Strategies

The Significance of Transmutation

1 March 2023

Neutron Energy Window: MA Fission Triggered (1-15MeV)

Neutron Absorption vs Fission

The first AD research reactor - MYRRHA

• Large infrastructure

 600 MeV – 1.5 GeV Proton Accelerators

Large undertaking in of itself

HUNGARIAN NATIONAL LABORATORY

• To be operational mid 2030's

Can laser ion acceleration do it *better* (than a linac)?

[Better]: more reliable

. . .

(>99% availability vs. 85%, beam trips <5min) less electrical consumption/higher efficiency (Myrhha: ~180MW) smaller footprint, smaller real estate

National Laser-Initiated Transmutation Laboratory University of Szeged

The Tajima-Mourou Scheme of a Neutron Source for a Laser-based Transmutator

Tajima et al., Fus.Sci.Tech., 77, 251 (2021)

National Laser-Initiated Transmutation Laboratory University of Szeged

Sub-critical reactor, *k*>0.99 -> 10¹⁶ n/s, >1 MeV/n Average power of the neutrons: 1.6 kW (1.6 kJ/s)

Laser needs

1% conversion from laser to neutron: 160 kW laser 0.1% conversion from laser to neutron: 1.6 MW laser

Number of lasers: 10... 100

National Laser-Initiated Transmutation Laboratory University of Szeged

Can laser ion acceleration do it *better* (than a linac)?

Reliability - chance of one laser is broken within a year is $< 10^{-7}$

Trouble-free operation of a laser (months): 2	10
Number of laser systems:	100	10

Novel reactor architecture

Multiple sources – isotropical burn Fast feedback and control - Al

Fig. 11 Relative reaction rate based distance from center of example cylindrical core with reflective wall. Single source vs. multiple sources

J. Tanner et al., PhD Thesis, UCI

National Laser-Initiated Transmutation Laboratory University of Szeged

Laser-based neutron sources PW class lasers – current situation

PhotoFusion

- Accelerate ion (proton, deuterium)
- Make fusion: Be(p,n), Li(p,n), D(d,n) (T)d,n)

Highest efficiency experiment

69×10⁷ n/J 11×10⁶ n/s

Günther et al., Nat. Com.13, (2022) 170

Predicted efficiency

~8×10¹⁰ n/J

~1300×10⁶ n/s

~1% laser->neutron

Photonuclear

- Accelerate electrons
- Brehmstralung and high Z converter: (γ,n), Li(p,n), D(d,n) (T)d,n)

2.9×10⁷ n/J 0.5×10⁶ n/s

Average power of such lasers is <1W

Laser spallation

- Accelerate proton
- Make fusion: Be(p,n), Li(p,n), D(d,n) (T)d,n)

National Laser-Initiated Transmutation Laboratory University of Szeged

Karoly Martinez et al., MatRadExt 7 (2022) 024401 BNL UWS' 23 1 March 2023

High yield neutron generation Route A - High average power lasers

Average power of industrial ps lasers is >(>)1kW

Average power of scientific, few cycle pulse lasers (ELI) is >(>)100W.

Current laser technology supporting high average power and relativistic pulse intensity is the high repetition rate, few TW peak intensity one.

Neutron generation with high average power, few cycle laser pulses.

National Laser-Initiated Transmutation Laboratory University of Szeged

National Laser-initiated Transmutation Laboratory University of Szeged, Hungary

Mission

Development of a laser based neutron source for transmutation of nuclear waste

Aim (2019-23/24)

Efficient acceleration of deuterons, and subsequently neutrons with few cycle high repetition rate lasers.

Funds: Hungarian Government (net ~7.6 M€; 20% for ELI-ALPS)

Primary venue: ELI-ALPS (as a duistingushed user)

Secondary venue: Dept Optics, University of Szeged

Consortium: Ecole Politechnique, TAE Technologies, and Uni Szeged MoU signed 5th April, 2019

Collaborations: ATOMKI, ELI-ALPS, RAL CLF, TU Budapest, ...

National Laser-Initiated Transmutation Laboratory University of Szeged

Fast neutron generation with 1 Hz repetition rate

National Laser-Initiated Transmutation Laboratory University of Szeged

Neutron generation

Laboratory time in ELI-ALPS

10.6.22-23.06.22, 7 laser days, ~3000 shots in 3 days

INTERACTIONS

LASER

Pulse energy: $\sim 35 mJ$ (measured for each shot)

Laser pulse duration: 11.6 fs Measured in vacuum, after OAP, with disp scan

Focal spot FWHM: $2.9 \times 3.5 \,\mu\text{m}^2$, Strehl ratio: >0.8

Peak intensity in focus: ~10¹⁹ W/cm² ($a_0 = 2.3$)

Temporal contrast

%EKSPLA

HUNGARIAN NATIONAL LABORATORY

TL

50

Toth, et al., Photonics **2**, 045003 (2020)

Proton and Deuterion and acceleration at 1 Hz repetition rate

Each shot is recorded and stamped – example shot #976

Proton and deuterion acceleration GDD and TOD scan 22nd June, per bursts (each of 75shots)

FWD

Full evaluation is in progress!

N

BWD

HUNGARIAN NATIONAL LABORATORY

-5000

-10000

-15000

-20000

Karoly Osvay BNL UWS' 23 1 March 2023

National Laser-Initiated **Transmutation Laboratory** University of Szeged

Fast Neutron generation at 1 Hz repetition rate

"Time-of-flight" recording of all shots

Neutrons in various directions

Forward

Backward

HUNGARIAN NATIONAL

High yield neutron generation Route B – Increase the laser-to-neutron conversion efficiency

Increase the efficiency of deuteron generation with low (or no) debris targets

Let's investigate neutron generation with long wavelength, high peak intensity lasers!

National Laser-Initiated Transmutation Laboratory University of Szeged

Fast neutron generation with ps 5J CO₂ laser

Major scientific aims – expected results

Experimental proof of previous, mainly theoretical results on wavelength-scaling theories for ions heavier than protons.

Scaling of $9.2\mu m$ laser-driven proton and deuteron acceleration as a function of

- pulse duration;
- intensity;
- polarisation.

First ion acceleration results from a low density foam target – a kind of intermediate transition between gases and solids.

First generation of neutrons with a ps CO_2 laser.

National Laser-Initiated Transmutation Laboratory University of Szeged

Fast neutron generation with ps 5J CO₂ laser

Planned campaigns

1st: Comparative study of proton and deuteron acceleration from gas targets (H2 and D2), with 2 ps, up to 5-10 J pulses.

- Measure proton and deuteron spectra
- Spatial ion beam profile.
- Change of spectral phase (and duration) of the pulses
- Polarisation effect (linear vs circular)
- Calibration of the Thomson ion spectrometer, if needed.

Further potential collaborating partner is John Adams Institute of Imperial College.

2nd: Proton and deuteron acceleration from foam targets, with 2 ps, up to 5-10 J pulses..

- Measure proton and deuteron spectra
- Spatial ion beam profile.
- Change of spectral phase (and duration) of the pulses
- Explore the interactions with circularly polarized pulses
- Effect of pre-pulses

Fast neutron generation with ps 5J CO₂ laser N HUNGARIAN NATIONAL Planned campaigns

3rd: Comparative study of deuteron acceleration from gas and foam targets, with 0.5 ps, 5J pulses.

- Measure proton and deuteron spectra, spatial beam profile.
- Change of spectral phase (and duration) of the pulses
- Effect of pre-pulses

4th: generation of neutrons with the CO2 laser generated ions on targets and pulse durations, which seemed most promising in the previous campaigns.

- Measure proton and deuteron spectra
- Measure neutron spectrum and yield
- Measure neutron angular distribution.

Fast neutron generation with ps 5J CO₂ laser

Experimental parameters

Pitcher targets:

Gas jets (to be provided by ATF)

Gases (H2, D2, to be provided by NLTL USZ)

Deuterised foam targets (prepared and provided by NLTL USZ)

Catcher target:

dPET tablet and / or Li target (prepared and provided by NLTL USZ)

Laser parameters

Laser pulse duration: 2 ps and, from 2024, 0.5 ps.

Laser pulse manipulation: spectral phase, polarisation, and pre-pulse.

Diagnostics expected from ATF:

Thomson ion spectrometer with MCP / CCD camera Electron spectrometer (with MCP / CCD or other electronic means) XUV spectrometer (range up to 1keV)

Diagnostics from NLTL Uni Szeged

Bubble (neutron) spectrometer detector system Plastic scintillator (neutron) detectors.

Fast neutron generation with ps 5J CO₂ laser

Major scientific aims – expected results

Experimental proof of previous, mainly theoretical results on wavelength-scaling theories for ions heavier than protons.

Scaling of $9.2\mu m$ laser-driven proton and deuteron acceleration as a function of

- pulse duration;
- intensity;
- polarisation.

First ion acceleration results from a low density foam target – a kind of intermediate transition between gases and solids.

First generation of neutrons with a ps CO_2 laser.

National Laser-Initiated Transmutation Laboratory University of Szeged

(Further) applications of laser-generated neutrons

Radiation damage research (space, fusion reactors, etc.) Home land security (proliferation) Radiation safety Isotope production Radiobiology (very short neutron bunches) Nuclear physics (very short neutron bunches)

. . .

M. Füle, T. Gilinger, P. Gaál, M. Karnok, B. Kis, A.P. Kovács,B. Nagy, B. Nagyillés, P. K. Singh, P. Varmazyar, S. Ter-Avetisyan

A. Börzsönyi, **J. Csontos, A. Farkas,** B. Farkas, T. Luca, **A. Mohácsi, R. Nagymihály,** K. Nielssen, D. Papp, T. Somoskői, L. Schrettner, **G. Szabó,** L. Tóth, **Sz. Tóth**

eli

B. Biró, I. Csedreki, **Z. Elekes, Z. Halasz, A. Fenyvesi, Zs. Fülöp,** Z. Korkulu, I. Kuti, **L. Stuhl**

A. Alejo, J. Benlliure, J.N. Penas, A.B. Fernandez, M. Seimetz

attosecond

S. Bulanov, G. Korn, D. Margarone, M. Matys, P. Valenta, A. Velyhan

A. Necas, T. Tajima

S. Figul, G. Marowski

G. Mourou, J. Wheeler

V. Bychenkov

INSTITUT POLYTECHNIQUE DE PARIS

Lebedev Institute

Grants are available until end 2024; further grant applications are in progress

Hungarian Government: ITM 1096/2019. (III.8.)

 National Research, Development and Innovation Office NKFIH-877-2/2020 NKFIH-476-4/2021 NKFIH-476-16/2021

National Laser-Initiated Transmutation Laboratory University of Szeged

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	
	Peak Power	GW	~3		
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	mJ	6		
	M ²		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	5	~5 TW operation will become available shortly into this year's experimental run period. A 3-year development effort to achieve >10 TW and deliver to users is in progress.	
	Pulse Mode		Single		
	Pulse Length	ps	2		Adjustable from 2ps – 20ps
	Pulse Energy	J	~5	<i>Maximum pulse energies of >10 J will become available within the next year</i>	5-10J
	M ²		~2		
	Repetition Rate	Hz	0.05		Shot on demand
	Polarization		Linear	Adjustable linear polarization along with circular polarization can be provided upon request	Lin. and circular

Special Equipment Requirements and Hazards

- CO₂ Laser
 - Pulse duration variable from the transform limit up to 10x transform limit
 - Polarization linear and circular
 - Variable pre-pulse level
 - Diagnostics expected from ATF:
 - Thomson ion spectrometer with MCP / CCD camera
 - Electron spectrometer (with MCP / CCD or other electronic means)
 - XUV spectrometer (range up to 1keV)
- Hazards & Special Installation Requirements
 - Radiation shielding against fast neutrons

Experimental Time Request

CY2023 Time Request

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in Laser Areas)	30	100 (incl. setup)
Laser* + Electron Beam		

Total Time Request for the 3-year Experiment (including CY2023-25)

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in Laser Areas)	120	400 (incl. setup
Laser* + Electron Beam		

* Laser = Near-IR or LWIR (CO_2) Laser

Thank you for your attention

